Afficher la notice abrégée

hal.structure.identifierModélisation Mathématique pour l'Oncologie [MONC]
hal.structure.identifierInstitut Polytechnique de Bordeaux [Bordeaux INP]
hal.structure.identifierCentre National de la Recherche Scientifique [CNRS]
dc.contributor.authorCOLLIN, Annabelle
hal.structure.identifierStatistics In System biology and Translational Medicine [SISTM]
hal.structure.identifierVaccine Research Institute [Créteil, France] [VRI]
dc.contributor.authorPRAGUE, Mélanie
hal.structure.identifierMathematical and Mechanical Modeling with Data Interaction in Simulations for Medicine [M3DISIM]
dc.contributor.authorMOIREAU, Philippe
dc.date.accessioned2024-04-04T02:40:10Z
dc.date.available2024-04-04T02:40:10Z
dc.date.issued2022-04-11
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/191041
dc.description.abstractEnEstimation of dynamical systems - in particular, identification of their parameters - is fundamental in computational biology, e.g., pharmacology, virology, or epidemiology, to reconcile model runs with available measurements. Unfortunately, the mean and variance priors of the parameters must be chosen very appropriately to balance our distrust of the measurements when the data are sparse or corrupted by noise. Otherwise, the identification procedure fails. One option is to use repeated measurements collected in configurations with common priors - for example, with multiple subjects in a clinical trial or clusters in an epidemiological investigation. This shared information is beneficial and is typically modeled in statistics using nonlinear mixed-effects models. In this paper, we present a data assimilation method that is compatible with such a mixed-effects strategy without being compromised by the potential curse of dimensionality. We define population-based estimators through maximum likelihood estimation. We then develop an equivalent robust sequential estimator for large populations based on filtering theory that sequentially integrates data. Finally, we limit the computational complexity by defining a reduced-order version of this population-based Kalman filter that clusters subpopulations with common observational backgrounds. The performance of the resulting algorithm is evaluated against classical pharmacokinetics benchmarks. Finally, the versatility of the proposed method is tested in an epidemiological study using real data on the hospitalisation of COVID-19 patients in the regions and departments of France.
dc.language.isoen
dc.publisherSociété de Mathématiques Appliquées et Industrielles (SMAI)
dc.rights.urihttp://creativecommons.org/licenses/by-nc/
dc.subject.enData Assimilation
dc.subject.enKalman Filters
dc.subject.enEpidemiology
dc.subject.enCOVID-19
dc.subject.enPharmacokinetics
dc.subject.enNon linear mixed-effect models
dc.title.enEstimation for dynamical systems using a population-based Kalman filter – Applications in computational biology
dc.typeArticle de revue
dc.identifier.doi10.5802/msia.25
dc.subject.halMathématiques [math]/Statistiques [math.ST]
dc.subject.halMathématiques [math]/Optimisation et contrôle [math.OC]
dc.subject.halInformatique [cs]/Modélisation et simulation
dc.subject.halSciences du Vivant [q-bio]/Sciences pharmaceutiques/Pharmacologie
bordeaux.journalMathematicS In Action
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-02869347
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-02869347v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=MathematicS%20In%20Action&rft.date=2022-04-11&rft.au=COLLIN,%20Annabelle&PRAGUE,%20M%C3%A9lanie&MOIREAU,%20Philippe&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée