The semilinear wave equation on asymptotically euclidean manifolds
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | BONY, Jean Francois | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | HÄFNER, Dietrich | |
dc.date.accessioned | 2024-04-04T02:39:32Z | |
dc.date.available | 2024-04-04T02:39:32Z | |
dc.date.created | 2008 | |
dc.date.issued | 2010 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/190977 | |
dc.description.abstractEn | We consider the quadratically semilinear wave equation on R^d, d>=3, equipped with a Riemannian metric. This metric is non-trapping and approaches the Euclidean metric polynomially at infinity. Using Mourre estimates and the Kato theory of smoothness, we obtain a Keel-Smith-Sogge type inequality for the linear equation. Thanks to this estimate, we prove long time existence (d=3) and global existence (d>3) for the nonlinear problem with small initial data. | |
dc.description.sponsorship | Equations hyperboliques dans des espaces-temps de la relativité générale : diffusion et résonances. - ANR-05-JCJC-0087 | |
dc.language.iso | en | |
dc.title.en | The semilinear wave equation on asymptotically euclidean manifolds | |
dc.type | Article de revue | |
dc.subject.hal | Mathématiques [math]/Equations aux dérivées partielles [math.AP] | |
dc.subject.hal | Mathématiques [math]/Physique mathématique [math-ph] | |
dc.subject.hal | Physique [physics]/Physique mathématique [math-ph] | |
bordeaux.journal | Comm. Partial Differential Equations | |
bordeaux.page | 23-67 | |
bordeaux.volume | 35 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 1 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-00384722 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00384722v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Comm.%20Partial%20Differential%20Equations&rft.date=2010&rft.volume=35&rft.issue=1&rft.spage=23-67&rft.epage=23-67&rft.au=BONY,%20Jean%20Francois&H%C3%84FNER,%20Dietrich&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |