Afficher la notice abrégée

hal.structure.identifierModélisation Mathématique pour l'Oncologie [MONC]
dc.contributor.authorINACIO, Eloïse
hal.structure.identifierModélisation Mathématique pour l'Oncologie [MONC]
dc.contributor.authorLAFITTE, Luc
hal.structure.identifierHôpital Avicenne [AP-HP]
dc.contributor.authorSUTTER, Olivier
hal.structure.identifierHôpital Avicenne [AP-HP]
dc.contributor.authorSEROR, Olivier
hal.structure.identifierModélisation Mathématique pour l'Oncologie [MONC]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorDENIS DE SENNEVILLE, Baudouin
hal.structure.identifierModélisation Mathématique pour l'Oncologie [MONC]
dc.contributor.authorPOIGNARD, Clair
dc.date.accessioned2024-04-04T02:38:41Z
dc.date.available2024-04-04T02:38:41Z
dc.date.conference2022-06-14
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/190897
dc.description.abstractEnThe objective of this paper is to provide a stepforward towards the per procedural visualisation of the electric field distribution during a clinical irreversible electroporation (IRE) procedure. To this end, an automated workflow is needed to compute the electric field distribution on a single Cone Beam Computed Tomography (CBCT) scan. The aim of the current paper is to propose a deep learning strategy for the automatic segmentation of the needles. In particular, a novel coarse-to-fine approach is proposed to extract relevant needle information from the CBCT scan, despite inherent artefacts generated during capture. The obtained needle information is subsequently fed into a standard static linear model for the electric field computation. Since the setup is performed in the medical image framework, the electric field distribution and the region of interest are visible to provide to the radiologist a visual evaluation of the treatment. The segmentation results are evaluated on 8 of the 16 patients of the dataset using the Dice coefficient to compare the predicted segmentation with the ground truth. The proposed segmentation method is fast (around 2 minutes are needed with a commodity hardware), allowing its use in a clinical setting.
dc.language.isoen
dc.subject.enDeep Neural Network
dc.subject.enFine-object Segmentation
dc.subject.enCBCT
dc.subject.enElectric field distribution
dc.title.enAutomated needle localisation for electric field computation during an electroporation ablation
dc.typeCommunication dans un congrès
dc.identifier.doi10.1109/MELECON53508.2022.9842866
dc.subject.halSciences de l'ingénieur [physics]/Traitement du signal et de l'image
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.conference.titleIEEE - MELECON 2022 - 21st Mediterranean Electrotechnical Conference
bordeaux.countryIT
bordeaux.conference.cityPalerme
bordeaux.peerReviewedoui
hal.identifierhal-03862360
hal.version1
hal.invitednon
hal.proceedingsoui
hal.conference.end2022-06-16
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03862360v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=INACIO,%20Elo%C3%AFse&LAFITTE,%20Luc&SUTTER,%20Olivier&SEROR,%20Olivier&DENIS%20DE%20SENNEVILLE,%20Baudouin&rft.genre=unknown


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée