Afficher la notice abrégée

hal.structure.identifierCentre National de la Recherche Scientifique [CNRS]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorBRUNEBARBE, Yohan
dc.date.accessioned2024-04-04T02:38:30Z
dc.date.available2024-04-04T02:38:30Z
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/190883
dc.description.abstractEnThe moduli stacks of Calabi-Yau varieties are known to enjoy several hyperbolicity properties. The best results have so far been proven using sophisticated analytic tools such as complex Hodge theory. Although the situation is very different in positive characteristic (e.g. the moduli stack of principally polarized abelian varieties of dimension at least 2 contains rational curves), we explain in this note how one can prove many hyperbolicity results by reduction to positive characteristic, relying ultimately on the nonabelian Hodge theory in positive characteristic developed by Ogus and Vologodsky.
dc.language.isoen
dc.title.enAn algebraic approach to the hyperbolicity of moduli stacks of Calabi-Yau varieties
dc.typeDocument de travail - Pré-publication
dc.subject.halMathématiques [math]
dc.identifier.arxiv2206.15399
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-03864876
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03864876v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=BRUNEBARBE,%20Yohan&rft.genre=preprint


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée