Afficher la notice abrégée

hal.structure.identifierCertified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
dc.contributor.authorSOLAI, Elie
hal.structure.identifierCertified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
dc.contributor.authorBEAUGENDRE, Heloise
hal.structure.identifierCEA- Saclay [CEA]
dc.contributor.authorBIEDER, Ulrich
hal.structure.identifierUncertainty Quantification in Scientific Computing and Engineering [PLATON]
dc.contributor.authorCONGEDO, Pietro Marco
dc.date.accessioned2024-04-04T02:37:32Z
dc.date.available2024-04-04T02:37:32Z
dc.date.issued2023-02-05
dc.identifier.issn1359-4311
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/190803
dc.description.abstractEnInternal resistance is a critical parameter of the thermal behavior of Li-ion battery cells. This paper proposes an innovative way to deal with the uncertainties related to this physical parameter using experimental data and numerical simulation. First, a CFD model is validated against an experimental configuration representing the behavior of heated Li-ion battery cells under constant discharging current conditions. Secondly, an Uncertainty Quantification based methodology is proposed to represent the internal resistance and its inherent uncertainties. Thanks to an accurate and fast to compute surrogate model, the impact of those uncertainties on the temperature evolution of Li-ion cells is quantified. Finally, Bayesian inference of the internal resistance model parameters using experimental measurements is performed, reducing the prediction uncertainty by almost 95% for some temperatures of interest. Finally, an enhanced internal model is constructed by considering the state of charge and temperature dependency on internal resistance. This model is implemented in the CFD code and used to model a full discharge of the Li-ion batteries. The resulting temperature evolution computed with the two different resistance models is compared for the low state of charge situations.
dc.language.isoen
dc.publisherElsevier
dc.subject.enLithium-ion batteries
dc.subject.enNumerical simulation
dc.subject.enUncertainty quantification
dc.subject.enSurrogate model
dc.subject.enKriging
dc.subject.enBayesian calibration
dc.subject.enImmersion cooling
dc.title.enAccuracy assessment of an internal resistance model of Li-ion batteries in immersion cooling configuration
dc.typeArticle de revue
dc.identifier.doi10.1016/j.applthermaleng.2022.119656
dc.subject.halPhysique [physics]/Physique [physics]/Dynamique des Fluides [physics.flu-dyn]
bordeaux.journalApplied Thermal Engineering
bordeaux.volume220
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue119656
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-03878853
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03878853v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Applied%20Thermal%20Engineering&rft.date=2023-02-05&rft.volume=220&rft.issue=119656&rft.eissn=1359-4311&rft.issn=1359-4311&rft.au=SOLAI,%20Elie&BEAUGENDRE,%20Heloise&BIEDER,%20Ulrich&CONGEDO,%20Pietro%20Marco&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée