Afficher la notice abrégée

hal.structure.identifierUniversità degli Studi di Ferrara = University of Ferrara [UniFE]
dc.contributor.authorBOSCHERI, Walter
hal.structure.identifierUniversità degli Studi di Trento = University of Trento [UNITN]
dc.contributor.authorDUMBSER, Michael
hal.structure.identifierCertified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
dc.contributor.authorGABURRO, Elena
dc.date.accessioned2024-04-04T02:37:24Z
dc.date.available2024-04-04T02:37:24Z
dc.date.issued2022-08
dc.identifier.issn1815-2406
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/190797
dc.description.abstractEnWe propose a new high order accurate nodal discontinuous Galerkin (DG) method for the solution of nonlinear hyperbolic systems of partial differential equations (PDE) on unstructured polygonal Voronoi meshes. Rather than using classical polynomials of degree N inside each element, in our new approach the discrete solution is represented by piecewise continuous polynomials of degree N within each Voronoi element, using a continuous finite element basis defined on a subgrid inside each polygon. We call the resulting subgrid basis an agglomerated finite element (AFE) basis for the DG method on general polygons, since it is obtained by the agglomeration of the finite element basis functions associated with the subgrid triangles. The basis functions on each sub-triangle are defined, as usual, on a universal reference element, hence allowing to compute universal mass, flux and stiffness matrices for the subgrid triangles once and for all in a pre-processing stage for the reference element only. Consequently, the construction of an efficient quadrature-free algorithm is possible, despite the unstructured nature of the computational grid. High order of accuracy in time is achieved thanks to the ADER approach, making use of an element-local space-time Galerkin finite element predictor. The novel schemes are carefully validated against a set of typical benchmark problems for the compressible Euler and Navier-Stokes equations. The numerical results have been checked with reference solutions available in literature and also systematically compared, in terms of computational efficiency and accuracy, with those obtained by the corresponding modal DG version of the scheme.
dc.language.isoen
dc.publisherGlobal Science Press
dc.subject.encontinuous finite element subgrid basis for DG schemes
dc.subject.enhigh order quadrature- free ADER-DG schemes
dc.subject.enunstructured Voronoi meshes
dc.subject.encomparison of nodal and modal basis
dc.subject.encompressible Euler and Navier-Stokes equations
dc.title.enContinuous Finite Element Subgrid Basis Functions for Discontinuous Galerkin Schemes on Unstructured Polygonal Voronoi Meshes
dc.typeArticle de revue
dc.identifier.doi10.4208/cicp.OA-2021-0235
dc.subject.halMathématiques [math]
dc.identifier.arxiv2205.14673
dc.description.sponsorshipEuropeStructure Preserving schemes for Conservation Laws on Space Time Manifolds
bordeaux.journalCommunications in Computational Physics
bordeaux.page259-298
bordeaux.volume32
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue1
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-03886268
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03886268v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Communications%20in%20Computational%20Physics&rft.date=2022-08&rft.volume=32&rft.issue=1&rft.spage=259-298&rft.epage=259-298&rft.eissn=1815-2406&rft.issn=1815-2406&rft.au=BOSCHERI,%20Walter&DUMBSER,%20Michael&GABURRO,%20Elena&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée