Mostrar el registro sencillo del ítem
An arbitrary high order and positivity preserving method for the shallow water equations
hal.structure.identifier | Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM] | |
dc.contributor.author | CIALLELLA, M. | |
hal.structure.identifier | Universität Zürich [Zürich] = University of Zurich [UZH] | |
dc.contributor.author | MICALIZZI, Lorenzo | |
hal.structure.identifier | Johannes Gutenberg - Universität Mainz = Johannes Gutenberg University [JGU] | |
dc.contributor.author | ÖFFNER, Philipp | |
hal.structure.identifier | SISSA MathLab [Trieste] | |
dc.contributor.author | TORLO, Davide | |
dc.date.accessioned | 2024-04-04T02:37:15Z | |
dc.date.available | 2024-04-04T02:37:15Z | |
dc.date.issued | 2022-10 | |
dc.identifier.issn | 0045-7930 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/190789 | |
dc.description.abstractEn | In this paper, we develop and present an arbitrary high order well-balanced finite volume WENO method combined with the modified Patankar Deferred Correction (mPDeC) time integration method for the shallow water equations. Due to the positivity-preserving property of mPDeC, the resulting scheme is unconditionally positivity preserving for the water height. To apply the mPDeC approach, we have to interpret the spatial semi-discretization in terms of production-destruction systems. Only small modifications inside the classical WENO implementation are necessary and we explain how it can be done. In numerical simulations, focusing on a fifth order method, we demonstrate the good performance of the new method and verify the theoretical properties. | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.subject.en | positivity preserving | |
dc.subject.en | well-balanced | |
dc.subject.en | WENO | |
dc.subject.en | modified Patankar | |
dc.subject.en | shallow water | |
dc.subject.en | deferred correction | |
dc.title.en | An arbitrary high order and positivity preserving method for the shallow water equations | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1016/j.compfluid.2022.105630 | |
dc.subject.hal | Mathématiques [math] | |
bordeaux.journal | Computers and Fluids | |
bordeaux.page | 105630 | |
bordeaux.volume | 247 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-03893632 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-03893632v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Computers%20and%20Fluids&rft.date=2022-10&rft.volume=247&rft.spage=105630&rft.epage=105630&rft.eissn=0045-7930&rft.issn=0045-7930&rft.au=CIALLELLA,%20M.&MICALIZZI,%20Lorenzo&%C3%96FFNER,%20Philipp&TORLO,%20Davide&rft.genre=article |
Archivos en el ítem
Archivos | Tamaño | Formato | Ver |
---|---|---|---|
No hay archivos asociados a este ítem. |