Mostrar el registro sencillo del ítem
Localized model reduction for nonlinear elliptic partial differential equations: localized training, partition of unity, and adaptive enrichment
hal.structure.identifier | Department of Electrical and Computer Engineering | |
dc.contributor.author | SMETANA, Kathrin | |
hal.structure.identifier | Modeling Enablers for Multi-PHysics and InteractionS [MEMPHIS] | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | TADDEI, Tommaso | |
dc.date.accessioned | 2024-04-04T02:36:57Z | |
dc.date.available | 2024-04-04T02:36:57Z | |
dc.date.issued | 2023-06-15 | |
dc.identifier.issn | 1064-8275 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/190765 | |
dc.description.abstractEn | We propose a component-based (CB) parametric model order reduction (pMOR) formulation for parameterized nonlinear elliptic partial differential equations (PDEs). CB-pMOR is designed to deal with large-scale problems for which full-order solves are not affordable in a reasonable time frame or parameters' variations induce topology changes that prevent the application of monolithic pMOR techniques. We rely on the partition-of-unity method (PUM) to devise global approximation spaces from local reduced spaces, and on Galerkin projection to compute the global state estimate. We propose a randomized data compression algorithm based on oversampling for the construction of the components' reduced spaces: the approach exploits random boundary conditions of controlled smoothness on the oversampling boundary. We further propose an adaptive residual-based enrichment algorithm that exploits global reduced-order solves on representative systems to update the local reduced spaces. We prove exponential convergence of the enrichment procedure for linear coercive problems; we further present numerical results for a two-dimensional nonlinear diffusion problem to illustrate the many features of our proposal and demonstrate its effectiveness. | |
dc.language.iso | en | |
dc.publisher | Society for Industrial and Applied Mathematics | |
dc.subject.en | parameterized partial differential equations | |
dc.subject.en | model order reduction | |
dc.subject.en | domain decomposition | |
dc.title.en | Localized model reduction for nonlinear elliptic partial differential equations: localized training, partition of unity, and adaptive enrichment | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1137/22M148402X | |
dc.subject.hal | Mathématiques [math]/Analyse numérique [math.NA] | |
bordeaux.journal | SIAM Journal on Scientific Computing | |
bordeaux.page | A1300-A1331 | |
bordeaux.volume | 45 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 3 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-03910541 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-03910541v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=SIAM%20Journal%20on%20Scientific%20Computing&rft.date=2023-06-15&rft.volume=45&rft.issue=3&rft.spage=A1300-A1331&rft.epage=A1300-A1331&rft.eissn=1064-8275&rft.issn=1064-8275&rft.au=SMETANA,%20Kathrin&TADDEI,%20Tommaso&rft.genre=article |
Archivos en el ítem
Archivos | Tamaño | Formato | Ver |
---|---|---|---|
No hay archivos asociados a este ítem. |