Afficher la notice abrégée

hal.structure.identifierInstitut Polytechnique de Bordeaux [Bordeaux INP]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorAREGBA-DRIOLLET, Denise
hal.structure.identifierInstitut Polytechnique de Bordeaux [Bordeaux INP]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorBRULL, Stéphane
hal.structure.identifierLaboratoire de Mathématiques Blaise Pascal [LMBP]
dc.contributor.authorPENG, Yue-Jun
dc.date.accessioned2024-04-04T02:35:55Z
dc.date.available2024-04-04T02:35:55Z
dc.date.issued2021
dc.identifier.issn0036-1410
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/190683
dc.description.abstractEnThe bitemperature Euler model describes a crucial step of Inertial Confinement Fusion (ICF) when the plasma is quasineutral while ionic and electronic temperatures remain distinct. The model is written as a first-order hyperbolic system in non-conservative form with partially dissipative source terms. We consider the polytropic case for both ions and electrons with different γ-law pressures. The system does not fulfill the Shizuta-Kawashima condition and the physical entropy, which is a strictly convex function, does not provide a symmetrizer of the system. In this paper we exhibit a symmetrizer to apply the result on the local existence of smooth solutions in several space dimensions. In the one-dimensional case we establish energy and dissipation estimates leading to global existence for small perturbations of equilibrium states.
dc.language.isoen
dc.publisherSociety for Industrial and Applied Mathematics
dc.rights.urihttp://creativecommons.org/licenses/by/
dc.subject.ennon-conservative hyperbolic system
dc.subject.enpartial dissipation
dc.subject.ensymmetrization
dc.subject.enenergy estimates
dc.subject.enEuler type model for plasmas AMS subject classifications. 35L60
dc.title.enGLOBAL EXISTENCE OF SMOOTH SOLUTIONS FOR A NON-CONSERVATIVE BITEMPERATURE EULER MODEL *
dc.typeArticle de revue
dc.identifier.doi10.1137/20M1353812
dc.subject.halMathématiques [math]
bordeaux.journalSIAM Journal on Mathematical Analysis
bordeaux.page1886-1907
bordeaux.volume53
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue2
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-03944419
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03944419v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=SIAM%20Journal%20on%20Mathematical%20Analysis&rft.date=2021&rft.volume=53&rft.issue=2&rft.spage=1886-1907&rft.epage=1886-1907&rft.eissn=0036-1410&rft.issn=0036-1410&rft.au=AREGBA-DRIOLLET,%20Denise&BRULL,%20St%C3%A9phane&PENG,%20Yue-Jun&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée