GLOBAL EXISTENCE OF SMOOTH SOLUTIONS FOR A NON-CONSERVATIVE BITEMPERATURE EULER MODEL *
hal.structure.identifier | Institut Polytechnique de Bordeaux [Bordeaux INP] | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | AREGBA-DRIOLLET, Denise | |
hal.structure.identifier | Institut Polytechnique de Bordeaux [Bordeaux INP] | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | BRULL, Stéphane | |
hal.structure.identifier | Laboratoire de Mathématiques Blaise Pascal [LMBP] | |
dc.contributor.author | PENG, Yue-Jun | |
dc.date.accessioned | 2024-04-04T02:35:55Z | |
dc.date.available | 2024-04-04T02:35:55Z | |
dc.date.issued | 2021 | |
dc.identifier.issn | 0036-1410 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/190683 | |
dc.description.abstractEn | The bitemperature Euler model describes a crucial step of Inertial Confinement Fusion (ICF) when the plasma is quasineutral while ionic and electronic temperatures remain distinct. The model is written as a first-order hyperbolic system in non-conservative form with partially dissipative source terms. We consider the polytropic case for both ions and electrons with different γ-law pressures. The system does not fulfill the Shizuta-Kawashima condition and the physical entropy, which is a strictly convex function, does not provide a symmetrizer of the system. In this paper we exhibit a symmetrizer to apply the result on the local existence of smooth solutions in several space dimensions. In the one-dimensional case we establish energy and dissipation estimates leading to global existence for small perturbations of equilibrium states. | |
dc.language.iso | en | |
dc.publisher | Society for Industrial and Applied Mathematics | |
dc.rights.uri | http://creativecommons.org/licenses/by/ | |
dc.subject.en | non-conservative hyperbolic system | |
dc.subject.en | partial dissipation | |
dc.subject.en | symmetrization | |
dc.subject.en | energy estimates | |
dc.subject.en | Euler type model for plasmas AMS subject classifications. 35L60 | |
dc.title.en | GLOBAL EXISTENCE OF SMOOTH SOLUTIONS FOR A NON-CONSERVATIVE BITEMPERATURE EULER MODEL * | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1137/20M1353812 | |
dc.subject.hal | Mathématiques [math] | |
bordeaux.journal | SIAM Journal on Mathematical Analysis | |
bordeaux.page | 1886-1907 | |
bordeaux.volume | 53 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 2 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-03944419 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-03944419v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=SIAM%20Journal%20on%20Mathematical%20Analysis&rft.date=2021&rft.volume=53&rft.issue=2&rft.spage=1886-1907&rft.epage=1886-1907&rft.eissn=0036-1410&rft.issn=0036-1410&rft.au=AREGBA-DRIOLLET,%20Denise&BRULL,%20St%C3%A9phane&PENG,%20Yue-Jun&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |