Mostrar el registro sencillo del ítem

hal.structure.identifierModélisation Mathématique pour l'Oncologie [MONC]
dc.contributor.authorCOLLIN, Annabelle
hal.structure.identifierModélisation Mathématique pour l'Oncologie [MONC]
dc.contributor.authorCORRIDORE, Sergio
hal.structure.identifierModélisation Mathématique pour l'Oncologie [MONC]
dc.contributor.authorPOIGNARD, Clair
dc.contributor.editorSuzuki T
dc.contributor.editorPoignard C
dc.contributor.editorChaplain M
dc.contributor.editorQuaranta V
dc.date.accessioned2024-04-04T02:35:52Z
dc.date.available2024-04-04T02:35:52Z
dc.date.issued2021-08
dc.date.conference2020-10-26
dc.identifier.isbn978-981-16-4866-3
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/190679
dc.description.abstractEnIn electromagnetism, a conductor that is not connected to the ground is an equipo-tential whose value is implicitly determined by the constraint of the problem. It leads to a non-local constraints on the flux along the conductor interface, so-called floating potential problems. Unlike previous numerical study that tackle the floating potential problems with the help of advanced and complex numerical methods, we show how an appropriate use of Steklov-Poincaré operators enables to obtain the solution to this partial differential equations with a non local constraint as a linear (and well-designed) combination of N + 1 Dirichlet problems, N being the number of conductors not connected to a ground potential. In the case of thin highly conductive inclusion, we perform an asymptotic analysis to approach the electroquasistatic potential at any order of accuracy. In particular, we show that the so-called floating potential approaches the electroquasistatic potential with a first order accuracy. This enables us to characterize the configurations for which floating potential approximation has to be used to accurately solve the electroquasistatic problem.
dc.language.isoen
dc.publisherSpringer Singapore
dc.publisher.locationSingapore
dc.source.titleSpringer Proceedings in Mathematics & Statistics
dc.subject.enFloating potential
dc.subject.enDirichlet to Neumann Operator
dc.subject.enThin Conductive Layer
dc.subject.enAsymptotic Analysis
dc.title.enFloating Potential Boundary Condition in Smooth Domains in an Electroporation Context
dc.typeCommunication dans un congrès
dc.identifier.doi10.1007/978-981-16-4866-3_6
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
bordeaux.page91-106
bordeaux.volume370
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.conference.titleMMDS 2020 - International Conference by Center for Mathematical Modeling and Data Science
bordeaux.countryJP
bordeaux.title.proceedingSpringer Proceedings in Mathematics & Statistics
bordeaux.conference.cityOsaka (JP)
bordeaux.peerReviewedoui
hal.identifierhal-03004806
hal.version1
hal.invitednon
hal.proceedingsoui
hal.conference.end2020-10-28
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03004806v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.btitle=Springer%20Proceedings%20in%20Mathematics%20&%20Statistics&rft.date=2021-08&rft.volume=370&rft.spage=91-106&rft.epage=91-106&rft.au=COLLIN,%20Annabelle&CORRIDORE,%20Sergio&POIGNARD,%20Clair&rft.isbn=978-981-16-4866-3&rft.genre=unknown


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem