Mostrar el registro sencillo del ítem
Shifted boundary polynomial corrections for compressible flows: high order on curved domains using linear meshes
hal.structure.identifier | École Nationale Supérieure d'Arts et Métiers [Bordeaux-Talence] [ENSAM | Bordeaux-Talence] | |
hal.structure.identifier | Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM] | |
dc.contributor.author | CIALLELLA, Mirco | |
hal.structure.identifier | Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM] | |
dc.contributor.author | GABURRO, Elena | |
hal.structure.identifier | Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM] | |
dc.contributor.author | LORINI, Marco | |
hal.structure.identifier | Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM] | |
dc.contributor.author | RICCHIUTO, Mario | |
dc.date.accessioned | 2024-04-04T02:35:35Z | |
dc.date.available | 2024-04-04T02:35:35Z | |
dc.date.issued | 2023-03 | |
dc.identifier.issn | 0096-3003 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/190653 | |
dc.description.abstractEn | In this work we propose a simple but effective high order polynomial correction allowing to enhance the consistency of all kind of boundary conditions for the Euler equations (Dirichlet, characteristic far-field and slip-wall), both in 2D and 3D, preserving a high order of accuracy without the need of curved meshes. The method proposed is a simplified reformulation of the Shifted Boundary Method (SBM) and relies on a correction based on the extrapolated value of the in cell polynomial to the true geometry, thus not requiring the explicit evaluation of high order Taylor series. Moreover, this strategy could be easily implemented into any already existing finite element and finite volume code. Several validation tests are presented to prove the convergence properties up to order four for 2D and 3D simulations with curved boundaries, as well as an effective extension to flows with shocks. | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.subject | Applied Mathematics | |
dc.subject | Computational Mathematics | |
dc.subject | Compressible flows | |
dc.subject | Curved boundaries | |
dc.subject | Unstructured linear meshes | |
dc.subject | Shifted Boundary Method | |
dc.subject | Discontinuous Galerkin | |
dc.title.en | Shifted boundary polynomial corrections for compressible flows: high order on curved domains using linear meshes | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1016/j.amc.2022.127698 | |
dc.subject.hal | Mathématiques [math] | |
dc.identifier.arxiv | 2209.14892 | |
dc.description.sponsorshipEurope | Structure Preserving schemes for Conservation Laws on Space Time Manifolds | |
bordeaux.journal | Applied Mathematics and Computation | |
bordeaux.page | 127698 | |
bordeaux.volume | 441 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 15 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-03865587 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-03865587v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Applied%20Mathematics%20and%20Computation&rft.date=2023-03&rft.volume=441&rft.issue=15&rft.spage=127698&rft.epage=127698&rft.eissn=0096-3003&rft.issn=0096-3003&rft.au=CIALLELLA,%20Mirco&GABURRO,%20Elena&LORINI,%20Marco&RICCHIUTO,%20Mario&rft.genre=article |
Archivos en el ítem
Archivos | Tamaño | Formato | Ver |
---|---|---|---|
No hay archivos asociados a este ítem. |