Show simple item record

hal.structure.identifierInstitut Denis Poisson [IDP]
dc.contributor.authorLE PEUTREC, Dorian
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorMICHEL, Laurent
hal.structure.identifierLaboratoire de Mathématiques Blaise Pascal [LMBP]
dc.contributor.authorNECTOUX, Boris
dc.date.accessioned2024-04-04T02:35:19Z
dc.date.available2024-04-04T02:35:19Z
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/190627
dc.description.abstractEnIn this work, we analyse the metastability of non-reversible diffusion processes dX t = b(X t)dt + √ h dB t on a bounded domain Ω when b admits the decomposition b = −(∇f + l) and ∇f ⋅l = 0. In this setting, we first show that, when h → 0, the principal eigenvalue of the generator of (X t) t≥0 with Dirichlet boundary conditions on the boundary ∂Ω of Ω is exponentially close to the inverse of the mean exit time from Ω, uniformly in the initial conditions X_0 = x within the compacts of Ω. The asymptotic behavior of the law of the exit time in this limit is also obtained. The main novelty of these first results follows from the consideration of non-reversible elliptic diffusions whose associated dynamical systems Ẋ = b(X) admit equilibrium points on ∂Ω. In a second time, when in addition div l = 0, we derive a new sharp asymptotic equivalent in the limit h → 0 of the principal eigenvalue of the generator of the process and of its mean exit time from Ω. Our proofs combine tools from large deviations theory and from semiclassical analysis, and truly relies on the notion of quasi-stationary distribution.
dc.description.sponsorshipAnalyse Quantitative de Processus Metastables - ANR-19-CE40-0010
dc.language.isoen
dc.subject.enMetastability
dc.subject.enEyring-Kramers type formulas
dc.subject.enmean exit time
dc.subject.enprincipal eigenvalue
dc.subject.ennon-reversible processes
dc.title.enEXIT TIME AND PRINCIPAL EIGENVALUE OF NON-REVERSIBLE ELLIPTIC DIFFUSIONS
dc.typeDocument de travail - Pré-publication
dc.subject.halMathématiques [math]/Probabilités [math.PR]
dc.subject.halMathématiques [math]/Théorie spectrale [math.SP]
dc.identifier.arxiv2303.06971
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-04024094
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-04024094v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=LE%20PEUTREC,%20Dorian&MICHEL,%20Laurent&NECTOUX,%20Boris&rft.genre=preprint


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record