Uniqueness of traveling fronts in premixed flames with stepwise ignition-temperature kinetics and fractional reaction order
hal.structure.identifier | Kent State University | |
dc.contributor.author | MATSON, Amanda | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | BRAUNER, Claude-Michel | |
hal.structure.identifier | Kent State University | |
dc.contributor.author | GORDON, Peter | |
dc.date.accessioned | 2024-04-04T02:34:27Z | |
dc.date.available | 2024-04-04T02:34:27Z | |
dc.date.created | 2023-05-03 | |
dc.date.issued | 2023-11-15 | |
dc.identifier.issn | 0167-2789 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/190553 | |
dc.description.abstractEn | In this paper, we consider a reaction-diffusion system describing the propagation of flames under the assumption of ignition-temperature kinetics and fractional reaction order. It was shown in [3] that this system admits a traveling front solution. In the present work, we show that this traveling front is unique up to translations. We also study some qualitative properties of this solution using the combination of formal asymptotics and numerics. Our findings allow conjecture that the velocity of the propagation of the flame front is a decreasing function of all of the parameters of the problem: ignition temperature, reaction order and an inverse of the Lewis number. | |
dc.language.iso | en | |
dc.publisher | Elsevier | |
dc.rights.uri | http://creativecommons.org/licenses/by/ | |
dc.subject.en | Reaction-diffusion systems | |
dc.subject.en | traveling front solution | |
dc.subject.en | uniqueness of solution | |
dc.title.en | Uniqueness of traveling fronts in premixed flames with stepwise ignition-temperature kinetics and fractional reaction order | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1016/j.physd.2023.133859 | |
dc.subject.hal | Mathématiques [math] | |
bordeaux.journal | Physica D: Nonlinear Phenomena | |
bordeaux.page | 133859 | |
bordeaux.volume | 454 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-04089767 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-04089767v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Physica%20D:%20Nonlinear%20Phenomena&rft.date=2023-11-15&rft.volume=454&rft.spage=133859&rft.epage=133859&rft.eissn=0167-2789&rft.issn=0167-2789&rft.au=MATSON,%20Amanda&BRAUNER,%20Claude-Michel&GORDON,%20Peter&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |