Mostrar el registro sencillo del ítem

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierModeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
dc.contributor.authorTADDEI, Tommaso
hal.structure.identifierModeling Enablers for Multi-PHysics and InteractionS [MEMPHIS]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorZHANG, Lei
dc.date.accessioned2024-04-04T02:33:56Z
dc.date.available2024-04-04T02:33:56Z
dc.date.issued2021-10-01
dc.identifier.issn0045-7825
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/190519
dc.description.abstractEnWe propose a new general approach for the treatment of parameterized geometries in projection-based model order reduction. During the offline stage, given (i) a family of parameterized domains $\{ \Omega_{\mu}: \mu \in \mathcal{P} \} \subset \mathbb{R}^D$ where $\mu \in \mathcal{P} \subset \mathbb{R}^P$ denotes a vector of parameters, (ii) a parameterized mapping $\underline{\Phi}_{\mu}$ between a reference domain $\Omega$ and the parameter-dependent domain $\Omega_{\mu}$, and (iii) a finite element triangulation of $\Omega$, we resort to an empirical quadrature procedure to select a subset of the elements of the grid. During the online stage, we first use the mapping to "move" the nodes of the selected elements and then we use standard element-wise residual evaluation routines to evaluate the residual and possibly its Jacobian. We discuss how to devise an online-efficient reduced-order model and we discuss the differences with the more standard "map-then-discretize" approach (e.g., Rozza, Huynh, Patera, ACME, 2007); in particular, we show how the discretize-then-map framework greatly simplifies the implementation of the reduced-order model. We apply our approach to a two-dimensional potential flow problem past a parameterized airfoil, and to the two-dimensional RANS simulations of the flow past the Ahmed body.
dc.language.isoen
dc.publisherElsevier
dc.rights.urihttp://creativecommons.org/licenses/by-nc/
dc.subject.enParameterized partial differential equations
dc.subject.enModel order reduction
dc.subject.enParameterized geometries
dc.title.enA discretize-then-map approach for the treatment of parameterized geometries in model order reduction
dc.typeArticle de revue
dc.identifier.doi10.1016/j.cma.2021.113956
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
dc.subject.halMathématiques [math]/Physique mathématique [math-ph]
dc.identifier.arxiv2010.13935
dc.description.sponsorshipEuropeAccurate Roms for Industrial Applications
bordeaux.journalComputer Methods in Applied Mechanics and Engineering
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-03120853
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03120853v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Computer%20Methods%20in%20Applied%20Mechanics%20and%20Engineering&rft.date=2021-10-01&rft.eissn=0045-7825&rft.issn=0045-7825&rft.au=TADDEI,%20Tommaso&ZHANG,%20Lei&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem