Nested Decomposition Approach to an Optical Network Design Problem
| hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
| dc.contributor.author | VIGNAC, Benoit | |
| hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
| hal.structure.identifier | Reformulations based algorithms for Combinatorial Optimization [Realopt] | |
| dc.contributor.author | VANDERBECK, François | |
| hal.structure.identifier | Concordia Institute for Information Systems Engineering [CIISE] | |
| dc.contributor.author | JAUMARD, Brigitte | |
| dc.date.accessioned | 2024-04-04T02:33:43Z | |
| dc.date.available | 2024-04-04T02:33:43Z | |
| dc.date.created | 2009-09-09 | |
| dc.date.issued | 2009 | |
| dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/190502 | |
| dc.description.abstractEn | We consider a telecommunication optical network design problem where traffic routing decisions imply the installation of expensive equipment at nodes. Customer requests come in the form of bandwidth reservations for a given origin destination pair. Capacity reservations are expressed as a multiple of nominal granularities. Each nominal granularity request must be single path rooted, with at most 2 optical hops. Grooming several requests on the same wavelength and multiplexing wavelengths in the same optical stream allows to pack more traffic. However, each adding or dropping of a request from a wavelength requires optical to electrical conversion for which a specific expensive equipment is needed. We deal with backbone optical network with relatively few nodes (around 20) but thousands of requests. We implement a nested decomposition approach doe this problem. We gather several requests into basic routing patterns; we then pack those into a wavelength; finally, we make a selection of such traffic to wavelength assignments that covers demands at the cheapest cost. The dynamic generation of basic routing patterns and wavelength assignments is driven by a column generation algorithm where pricing is done either heuristically or exactly. A rounding heuristic where the master LP is optimized, to optimality or not, by column generation provides primal solutions. This approach allows to find good heuristic solutions to large scale instances. | |
| dc.language.iso | en | |
| dc.title.en | Nested Decomposition Approach to an Optical Network Design Problem | |
| dc.type | Rapport | |
| bordeaux.page | 18 | |
| bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
| bordeaux.institution | Université de Bordeaux | |
| bordeaux.institution | Bordeaux INP | |
| bordeaux.institution | CNRS | |
| bordeaux.type.report | rr | |
| hal.identifier | inria-00415500 | |
| hal.version | 1 | |
| hal.audience | Non spécifiée | |
| hal.origin.link | https://hal.archives-ouvertes.fr//inria-00415500v1 | |
| bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2009&rft.spage=18&rft.epage=18&rft.au=VIGNAC,%20Benoit&VANDERBECK,%20Fran%C3%A7ois&JAUMARD,%20Brigitte&rft.genre=unknown |
Fichier(s) constituant ce document
| Fichiers | Taille | Format | Vue |
|---|---|---|---|
|
Il n'y a pas de fichiers associés à ce document. |
|||