The Littlewood problem and non-harmonic Fourier series
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | JAMING, Philippe | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | KELLAY, Karim | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | SABA, Chadi | |
dc.date.accessioned | 2024-04-04T02:33:36Z | |
dc.date.available | 2024-04-04T02:33:36Z | |
dc.date.created | 2023 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/190496 | |
dc.description.abstractEn | In this paper, we give a direct quantitative estimate of $L^1$norms of non-harmonic trigonometric polynomials over large enough intervals. This extends the result by Konyagin and Mc Gehee, Pigno, Smith to the settingof trigonometric polynomials with non-integer frequencies.The result is a quantitative extension of a result by Nazarov and also covers a resultby Hudson and Leckband when the length of the interval goes to infinity. | |
dc.language.iso | en | |
dc.title.en | The Littlewood problem and non-harmonic Fourier series | |
dc.type | Document de travail - Pré-publication | |
dc.subject.hal | Mathématiques [math]/Analyse classique [math.CA] | |
dc.identifier.arxiv | 2303.10919 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
hal.identifier | hal-04033535 | |
hal.version | 1 | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-04033535v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=JAMING,%20Philippe&KELLAY,%20Karim&SABA,%20Chadi&rft.genre=preprint |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |