Mostrar el registro sencillo del ítem
Single-Image based unsupervised joint segmentation and denoising
| hal.structure.identifier | Department of Mathematics [Innsbruck] | |
| dc.contributor.author | GRUBER, Nadja | |
| hal.structure.identifier | MRC Laboratory of Molecular Biology [Cambridge, UK] [LMB] | |
| dc.contributor.author | SCHWAB, Johannes | |
| hal.structure.identifier | Institut Pascal [IP] | |
| dc.contributor.author | DEBROUX, Noémie | |
| hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
| dc.contributor.author | PAPADAKIS, Nicolas | |
| hal.structure.identifier | Department of Mathematics [Innsbruck] | |
| dc.contributor.author | HALTMEIER, Markus | |
| dc.date.accessioned | 2024-04-04T02:33:14Z | |
| dc.date.available | 2024-04-04T02:33:14Z | |
| dc.date.issued | 2023-09-19 | |
| dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/190457 | |
| dc.description.abstractEn | In this work, we develop an unsupervised method for the joint segmentation and denoising of a single image. To this end, we combine the advantages of a variational segmentation method with the power of a self-supervised, single-image based deep learning approach. One major strength of our method lies in the fact, that in contrast to data-driven methods, where huge amounts of labeled samples are necessary, our model can segment an image into multiple meaningful regions without any training database. Further, we introduce a novel energy functional in which denoising and segmentation are coupled in a way that both tasks benefit from each other. The limitations of existing single-image based variational segmentation methods, which are not capable of dealing with high noise or generic texture, are tackled by this specific combination with self-supervised image denoising. We propose a unified optimisation strategy and show that, especially for very noisy images available in microscopy, our proposed joint approach outperforms its sequential counterpart as well as alternative methods focused purely on denoising or segmentation. Another comparison is conducted with a supervised deep learning approach designed for the same application, highlighting the good performance of our approach. | |
| dc.language.iso | en | |
| dc.title.en | Single-Image based unsupervised joint segmentation and denoising | |
| dc.type | Document de travail - Pré-publication | |
| dc.subject.hal | Informatique [cs]/Traitement des images | |
| dc.subject.hal | Statistiques [stat]/Machine Learning [stat.ML] | |
| dc.identifier.arxiv | 2309.10511 | |
| bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
| bordeaux.institution | Université de Bordeaux | |
| bordeaux.institution | Bordeaux INP | |
| bordeaux.institution | CNRS | |
| hal.identifier | hal-04212910 | |
| hal.version | 1 | |
| hal.origin.link | https://hal.archives-ouvertes.fr//hal-04212910v1 | |
| bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2023-09-19&rft.au=GRUBER,%20Nadja&SCHWAB,%20Johannes&DEBROUX,%20No%C3%A9mie&PAPADAKIS,%20Nicolas&HALTMEIER,%20Markus&rft.genre=preprint |
Archivos en el ítem
| Archivos | Tamaño | Formato | Ver |
|---|---|---|---|
|
No hay archivos asociados a este ítem. |
|||