ON INTEGRAL CLASS FIELD THEORY FOR VARIETIES OVER p-ADIC FIELDS
dc.contributor.author | GEISSER, Thomas | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | MORIN, Baptiste | |
dc.date.accessioned | 2024-04-04T02:32:44Z | |
dc.date.available | 2024-04-04T02:32:44Z | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/190408 | |
dc.description.abstractEn | Let K be a finite extension of the p-adic numbers Qp with ring of integers OK , X a regular scheme, proper, flat, and geometrically irreducible over OK of dimension d, and XK its generic fiber. We show, under some assumptions on XK , that there is a reciprocity isomorphism of locally compact groups H 2d−1 ar (XK , Z(d)) ≃ π ab 1 (XK)W from the cohomology theory defined in [9] to an integral model π ab 1 (XK)W of the abelianized geometric fundamental groups π ab 1 (XK) geo. After removing the contribution from the base field, the map becomes an isomorphism of finitely generated abelian groups. The key ingredient is the duality result in [9]. | |
dc.language.iso | en | |
dc.subject.en | 1991 Mathematics Subject Classification. Primary: 14G45 | |
dc.subject.en | Secondary: 11G25 | |
dc.subject.en | 14G20 | |
dc.subject.en | 14F42 | |
dc.title.en | ON INTEGRAL CLASS FIELD THEORY FOR VARIETIES OVER p-ADIC FIELDS | |
dc.type | Document de travail - Pré-publication | |
dc.type | Prepublication/Preprint | |
dc.subject.hal | Mathématiques [math] | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
hal.identifier | hal-03867108 | |
hal.version | 1 | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-03867108v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=GEISSER,%20Thomas&MORIN,%20Baptiste&rft.genre=preprint&unknown |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |