Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorARNAUDON, Marc
hal.structure.identifierInstitut Élie Cartan de Lorraine [IECL]
dc.contributor.authorCOULIBALY-PASQUIER, Koléhè
hal.structure.identifierToulouse School of Economics [TSE-R]
dc.contributor.authorMICLO, Laurent
dc.date.accessioned2024-04-04T02:32:36Z
dc.date.available2024-04-04T02:32:36Z
dc.date.created2023-11-14
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/190398
dc.description.abstractEnWe investigate renormalized curvature flow (RCF) and stochastic renormalized curvature flow (SRCF) for convex sets in the plane.RCF is the gradient descent flow for logarithm of sigma/\lambda^2 where sigma is the perimeter and lambda is the volume. SRCF is RCF perturbated by a Brownian noise and has the remarkable property that it can be intertwined with the Brownian motion, yielding a generalization of Pitman "2M-X" theorem.We prove that along RCF, entropy $E_t$ for curvature as well as h_t:=sigma_t/lambda_t are non-increasing. We deduce infinite lifetime and convergence to a disk after normalization.For SRCF the situation is more complicated. The process (h_t)_t is always a supermartingale. For (E_t)_t to be a supermartingale, we need that the starting set is invariant by the isometry group G_n generated by the reflection with respect to the vertical line and the rotation of angle 2\pi/n with n>= 3. But for proving infinite lifetime, we need invariance of the starting set by G_n with $n>= 7. We provide the first SRCF with infinite lifetime which cannot be reduced to a finite dimensional flow. Gage inequality plays a major role in our study of the regularity of flows, as well as a careful investigation of morphological skeletons. We characterize symmetric convex sets with star shaped skeletons in terms of properties of their Gauss map. Finally, we establish a new isoperimetric estimate for these sets, of order 1/n^4 where n is the number of branches of the skeleton.
dc.description.sponsorshipToulouse Graduate School défis en économie et sciences sociales quantitatives - ANR-17-EURE-0010
dc.language.isoen
dc.subject.enStochastic mean curvature evolution
dc.subject.enMorphological skeleton
dc.title.enThe stochastic renormalized mean curvature flow for planar convex sets
dc.typeDocument de travail - Pré-publication
dc.subject.halMathématiques [math]/Probabilités [math.PR]
dc.identifier.arxiv2303.07921
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-04018606
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-04018606v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=ARNAUDON,%20Marc&COULIBALY-PASQUIER,%20Kol%C3%A9h%C3%A8&MICLO,%20Laurent&rft.genre=preprint


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée