Afficher la notice abrégée

hal.structure.identifierUniversität Zürich [Zürich] = University of Zurich [UZH]
dc.contributor.authorMICALIZZI, Lorenzo
hal.structure.identifierCertified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM]
dc.contributor.authorRICCHIUTO, Mario
hal.structure.identifierUniversität Zürich [Zürich] = University of Zurich [UZH]
dc.contributor.authorABGRALL, Rémi
dc.date.accessioned2024-04-04T02:32:01Z
dc.date.available2024-04-04T02:32:01Z
dc.date.issued2023
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/190347
dc.description.abstractEnIn this work, in a monodimensional setting, the high order accuracy and the well-balanced (WB) properties of some novel continuous interior penalty (CIP) stabilizations for the Shallow Water (SW) equations are investigated. The underlying arbitrary high order numerical framework is given by a Residual Distribution (RD)/continuous Galerkin (CG) finite element method (FEM) setting for the space discretization coupled with a Deferred Correction (DeC) time integration, to have a fully-explicit scheme. If, on the one hand, the introduced CIP stabilizations are all specifically designed to guarantee the exact preservation of the lake at rest steady state, on the other hand, some of them make use of general structures to tackle the preservation of general steady states, whose explicit analytical expression is not known. Several basis functions have been considered in the numerical experiments and, in all cases, the numerical results confirm the high order accuracy and the ability of the novel stabilizations to exactly preserve the lake at rest steady state and to capture small perturbations of such equilibrium. Moreover, some of them, based on the notions of space residual and global flux, have shown very good performances and superconvergences in the context of general steady solutions not known in closed-form. Despite the simulations addressing the monodimensional SW equations only, many elements can be extended to other general hyperbolic systems and to a multidimensional setting.
dc.language.isoen
dc.rights.urihttp://creativecommons.org/licenses/by/
dc.subject.enNumerical Analysis (math.NA)
dc.subject.enFOS: Mathematics
dc.title.enNovel well-balanced continuous interior penalty stabilizations
dc.typeDocument de travail - Pré-publication
dc.identifier.doi10.48550/arXiv.2307.09697
dc.subject.halMathématiques [math]
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-04342011
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-04342011v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2023&rft.au=MICALIZZI,%20Lorenzo&RICCHIUTO,%20Mario&ABGRALL,%20R%C3%A9mi&rft.genre=preprint


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée