Mostrar el registro sencillo del ítem

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierUbisoft
dc.contributor.authorHOUDARD, Antoine
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorLECLAIRE, Arthur
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorPAPADAKIS, Nicolas
hal.structure.identifierEquipe Image - Laboratoire GREYC - UMR6072
dc.contributor.authorRABIN, Julien
dc.date.accessioned2024-04-04T02:31:55Z
dc.date.available2024-04-04T02:31:55Z
dc.date.issued2022-06-22
dc.identifier.issn0924-9907
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/190340
dc.description.abstractEnWe propose GOTEX, a general framework for texture synthesis by optimization that constrains the statistical distribution of local features. While our model encompasses several existing texture models, we focus on the case where the comparison between feature distributions relies on optimal transport distances. We show that the semi-dual formulation of optimal transport allows to control the distribution of various possible features, even if these features live in a high-dimensional space. We then study the resulting minimax optimization problem, which corresponds to a Wasserstein generative model, for which the inner concave maximization problem can be solved with standard stochastic gradient methods. The alternate optimization algorithm is shown to be versatile in terms of applications, features and architecture; in particular it allows to produce high-quality synthesized textures with different sets of features. We analyze the results obtained by constraining the distribution of patches or the distribution of responses to a pre-learned VGG neural network. We show that the patch representation can retrieve the desired textural aspect in a more precise manner. We also provide a detailed comparison with state-of-the-art texture synthesis methods. The GOTEX model based on patch features is also adapted to texture inpainting and texture interpolation. Finally, we show how to use our framework to learn a feed-forward neural network that can synthesize on-the-fly new textures of arbitrary size in a very fast manner. Experimental results and comparisons with the mainstream methods from the literature illustrate the relevance of the generative models learned with GOTEX.
dc.description.sponsorshipGeneralized Optimal Transport Models for Image processing - ANR-16-CE33-0010
dc.language.isoen
dc.publisherSpringer Verlag
dc.title.enA Generative Model for Texture Synthesis based on Optimal Transport between Feature Distributions
dc.typeArticle de revue
dc.identifier.doi10.1007/s10851-022-01108-9
dc.subject.halInformatique [cs]/Traitement du signal et de l'image
dc.identifier.arxiv2007.03408
bordeaux.journalJournal of Mathematical Imaging and Vision
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-03386084
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-03386084v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Mathematical%20Imaging%20and%20Vision&rft.date=2022-06-22&rft.eissn=0924-9907&rft.issn=0924-9907&rft.au=HOUDARD,%20Antoine&LECLAIRE,%20Arthur&PAPADAKIS,%20Nicolas&RABIN,%20Julien&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem