Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorISRAWI, Samer
dc.date.accessioned2024-04-04T02:30:02Z
dc.date.available2024-04-04T02:30:02Z
dc.date.created2009-12-01
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/190229
dc.description.abstractEnWe derive here a variant of the $2D$ Green-Naghdi equations that model the propagation of two-directional, nonlinear dispersive waves in shallow water. This new model has the same accuracy as the standard $2D $ Green-Naghdi equations. Its mathematical interest is that it allows a control of the rotational part of the (vertically averaged) horizontal velocity, which is not the case for the usual Green-Naghdi equations. Using this property, we show that the solution of these new equations can be constructed by a standard Picard iterative scheme so that there is no loss of regularity of the solution with respect to the initial condition. Finally, we prove that the new Green-Naghdi equations conserve the almost irrotationality of the vertically averaged horizontal component of the velocity.
dc.language.isoen
dc.subject.enGreen-Naghdi equations
dc.subject.enwater-waves
dc.title.enDerivation and analysis of a new 2D Green-Naghdi system
dc.typeDocument de travail - Pré-publication
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
dc.identifier.arxiv1001.2850
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-00447005
hal.version1
hal.audienceNon spécifiée
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00447005v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=ISRAWI,%20Samer&rft.genre=preprint


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée