Coupling Dispersive Shallow Water Models by Deriving Asymptotic Interface Operators
hal.structure.identifier | Littoral, Environment: MOdels and Numerics [LEMON] | |
hal.structure.identifier | Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM] | |
dc.contributor.author | GALAZ, José | |
hal.structure.identifier | Certified Adaptive discRete moDels for robust simulAtions of CoMplex flOws with Moving fronts [CARDAMOM] | |
dc.contributor.author | KAZOLEA, Maria | |
hal.structure.identifier | Littoral, Environment: MOdels and Numerics [LEMON] | |
dc.contributor.author | ROUSSEAU, Antoine | |
dc.date.accessioned | 2024-04-04T02:30:01Z | |
dc.date.available | 2024-04-04T02:30:01Z | |
dc.date.created | 2022-11-14 | |
dc.date.issued | 2024-01-23 | |
dc.date.conference | 2022-07-25 | |
dc.identifier.isbn | 978-3-031-50769-4 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/190228 | |
dc.description.abstractEn | We derive transmission operators for coupling linear Green-Naghdi equations (LGNE) with linear shallow water equations (LSWE) --the heterogeneous case -- or for coupling LGNE with LGNE --the homogeneous case. We derive them from a domain decomposition method (Neumann-Dirichlet) of the linear Euler equations by applying the same vertical-averaging process and truncation of the asymptotic expansion of the velocity field used in the derivation of the equations. We find that the new asymptotic transmision conditions also correspond to Neumann and Dirichlet operators. In the homogeneous case the method has the same convergence condition as the parent domain decomposition method but leads to a solution that is different from the monodomain solution due to an $O(\Delta x)$ term. In the heterogeneous case the Neumann-Dirichlet operators translate into a simple interpolation across the interface, with an extra $O(\Delta x^2)$ term. We show numerically that in this case the method introduces oscillations whose amplitude grows as the mesh is refined, thus leading to an unstable scheme. | |
dc.language.iso | en | |
dc.publisher | Springer Nature Switzerland | |
dc.rights.uri | http://creativecommons.org/licenses/by/ | |
dc.source.title | Lecture Notes in Computational Science and Engineering | |
dc.subject.en | heterogeneous ddm | |
dc.subject.en | Coupling | |
dc.subject.en | Shallow water | |
dc.subject.en | Dispersive Wave | |
dc.title.en | Coupling Dispersive Shallow Water Models by Deriving Asymptotic Interface Operators | |
dc.type | Communication dans un congrès | |
dc.identifier.doi | 10.1007/978-3-031-50769-4_21 | |
dc.subject.hal | Mathématiques [math] | |
dc.subject.hal | Physique [physics]/Physique mathématique [math-ph] | |
bordeaux.page | 181-188 | |
bordeaux.volume | LNCSE-149 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.conference.title | 27th International Conference on Domain Decomposition Methods in Science and Engineering - DD27 | |
bordeaux.country | CZ | |
bordeaux.title.proceeding | Lecture Notes in Computational Science and Engineering | |
bordeaux.conference.city | Prague | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-03851031 | |
hal.version | 1 | |
hal.invited | non | |
hal.proceedings | oui | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-03851031v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.btitle=Lecture%20Notes%20in%20Computational%20Science%20and%20Engineering&rft.date=2024-01-23&rft.volume=LNCSE-149&rft.spage=181-188&rft.epage=181-188&rft.au=GALAZ,%20Jos%C3%A9&KAZOLEA,%20Maria&ROUSSEAU,%20Antoine&rft.isbn=978-3-031-50769-4&rft.genre=unknown |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |