Solving the p-Riccati Equations and Applications to the Factorisation of Differential Operators.
| hal.structure.identifier | Université de Bordeaux [UB] | |
| hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
| hal.structure.identifier | Calcul formel, mathématiques expérimentales et interactions [MATHEXP] | |
| dc.contributor.author | PAGÈS, Raphaël | |
| dc.date.accessioned | 2024-04-04T02:29:46Z | |
| dc.date.available | 2024-04-04T02:29:46Z | |
| dc.date.created | 2024-01 | |
| dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/190206 | |
| dc.description.abstractEn | The solutions of the equation f^{ (p−1) }+ f^p = h^p in the unknown function f overan algebraic function field of characteristic p are very closely linked to the structure and fac-torisations of linear differential operators with coefficients in function fields of characteristic p.However, while being able to solve this equation over general algebraic function fields is necessaryeven for operators with rational coefficients, no general resolution method has been developed.We present an algorithm for testing the existence of solutions in polynomial time in the “size”of h and an algorithm based on the computation of Riemann-Roch spaces and the selection ofelements in the divisor class group, for computing solutions of size polynomial in the “size” of hin polynomial time in the size of h and linear in the characteristic p, and discuss its applicationsto the factorisation of linear differential operators in positive characteristic p. | |
| dc.language.iso | en | |
| dc.subject.en | Differential operators in positive characteristic | |
| dc.subject.en | Factorisation | |
| dc.subject.en | Positive characteristic | |
| dc.subject.en | Algebraic function fields | |
| dc.subject.en | Symbolic computation | |
| dc.subject.en | Local / global | |
| dc.subject.en | Riemann-Roch spaces | |
| dc.subject.en | Divisor class group | |
| dc.title.en | Solving the p-Riccati Equations and Applications to the Factorisation of Differential Operators. | |
| dc.type | Document de travail - Pré-publication | |
| dc.subject.hal | Informatique [cs]/Calcul formel [cs.SC] | |
| dc.subject.hal | Mathématiques [math]/Théorie des nombres [math.NT] | |
| dc.subject.hal | Mathématiques [math]/Algèbres d'opérateurs [math.OA] | |
| bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
| bordeaux.institution | Université de Bordeaux | |
| bordeaux.institution | Bordeaux INP | |
| bordeaux.institution | CNRS | |
| hal.identifier | hal-04490342 | |
| hal.version | 1 | |
| hal.audience | Internationale | |
| hal.origin.link | https://hal.archives-ouvertes.fr//hal-04490342v1 | |
| bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=PAG%C3%88S,%20Rapha%C3%ABl&rft.genre=preprint |
Fichier(s) constituant ce document
| Fichiers | Taille | Format | Vue |
|---|---|---|---|
|
Il n'y a pas de fichiers associés à ce document. |
|||