Afficher la notice abrégée

hal.structure.identifierUniversité de Bordeaux [UB]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierCalcul formel, mathématiques expérimentales et interactions [MATHEXP]
dc.contributor.authorPAGÈS, Raphaël
dc.date.accessioned2024-04-04T02:29:46Z
dc.date.available2024-04-04T02:29:46Z
dc.date.created2024-01
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/190206
dc.description.abstractEnThe solutions of the equation f^{ (p−1) }+ f^p = h^p in the unknown function f overan algebraic function field of characteristic p are very closely linked to the structure and fac-torisations of linear differential operators with coefficients in function fields of characteristic p.However, while being able to solve this equation over general algebraic function fields is necessaryeven for operators with rational coefficients, no general resolution method has been developed.We present an algorithm for testing the existence of solutions in polynomial time in the “size”of h and an algorithm based on the computation of Riemann-Roch spaces and the selection ofelements in the divisor class group, for computing solutions of size polynomial in the “size” of hin polynomial time in the size of h and linear in the characteristic p, and discuss its applicationsto the factorisation of linear differential operators in positive characteristic p.
dc.language.isoen
dc.subject.enDifferential operators in positive characteristic
dc.subject.enFactorisation
dc.subject.enPositive characteristic
dc.subject.enAlgebraic function fields
dc.subject.enSymbolic computation
dc.subject.enLocal / global
dc.subject.enRiemann-Roch spaces
dc.subject.enDivisor class group
dc.title.enSolving the p-Riccati Equations and Applications to the Factorisation of Differential Operators.
dc.typeDocument de travail - Pré-publication
dc.subject.halInformatique [cs]/Calcul formel [cs.SC]
dc.subject.halMathématiques [math]/Théorie des nombres [math.NT]
dc.subject.halMathématiques [math]/Algèbres d'opérateurs [math.OA]
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-04490342
hal.version1
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-04490342v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=PAG%C3%88S,%20Rapha%C3%ABl&rft.genre=preprint


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée