Afficher la notice abrégée

hal.structure.identifierLaboratoire Jacques-Louis Lions [LJLL (UMR_7598)]
hal.structure.identifierNumerical Analysis, Geophysics and Ecology [ANGE]
dc.contributor.authorEL HASSANIEH, Chourouk
hal.structure.identifierÉquipe EDP et Physique Mathématique
dc.contributor.authorRIGAL, Mathieu
hal.structure.identifierLaboratoire Jacques-Louis Lions [LJLL (UMR_7598)]
hal.structure.identifierNumerical Analysis, Geophysics and Ecology [ANGE]
dc.contributor.authorSAINTE-MARIE, Jacques
dc.date.created2024
dc.date.issued2023-03-28
dc.description.abstractEnExplicit (in time) kinetic schemes applied to the nonlinear shallow water equations have been extensively studied in the past. The novelty of this paper is to investigate an implicit version of such methods in order to improve their stability properties. In the case of a flat bathymetry we obtain a fully implicit kinetic solver satisfying a discrete entropy inequality and keeping the water height non negative without any restriction on the time step. Remarkably, a simplified version of this nonlinear implicit scheme allows to express the update explicitly which we implement in practice. The case of varying bottoms is then dealt with through an iterative solver combined with the hydrostatic reconstruction technique. We show that this scheme preserves the water height non-negativity under a CFL condition and satisfies a discrete entropy inequality without error term, which is an improvement over its explicit version. An extension of the implicit and iterative methods to the two dimensional case is also discussed. Finally we perform some numerical validations underlining the advantages and the computational cost of our strategy.
dc.language.isoen
dc.rights.urihttp://creativecommons.org/licenses/by-sa/
dc.subject.enShallow water equations
dc.subject.enKinetic solver
dc.subject.enFully discrete entropy inequality
dc.subject.enWell-balanced schemes
dc.subject.enHydrostatic reconstruction
dc.title.enImplicit kinetic schemes for the Saint-Venant system
dc.typeDocument de travail - Pré-publication
dc.subject.halMathématiques [math]/Analyse numérique [math.NA]
hal.identifierhal-04048832
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-04048832v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2023-03-28&rft.au=EL%20HASSANIEH,%20Chourouk&RIGAL,%20Mathieu&SAINTE-MARIE,%20Jacques&rft.genre=preprint


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée