Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorSTOICA, Codruta
dc.date.accessioned2024-04-04T02:29:28Z
dc.date.available2024-04-04T02:29:28Z
dc.date.created2010-02-01
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/190176
dc.description.abstractEnThe aim of this paper is to emphasize various concepts of dichotomies for evolution equations in Banach spaces, due to the important role they play in the approach of stable, instable and central manifolds. The asymptotic properties of the solutions of the evolution equations are studied by means of the asymptotic behaviors for skew-evolution semiflows.
dc.language.isoen
dc.subject.enevolution semiflow
dc.subject.enevolution cocycle
dc.subject.enskew-evolution semiflow
dc.subject.enuniform exponential dichotomy
dc.subject.enBarreira-Valls exponential dichotomy
dc.subject.enexponential dichotomy
dc.subject.enuniform polynomial dichotomy
dc.subject.enBarreira-Valls polynomial dichotomy
dc.subject.enpolynomial dichotomy
dc.title.enDichotomies for evolution equations in Banach spaces
dc.typeDocument de travail - Pré-publication
dc.subject.halMathématiques [math]/Analyse classique [math.CA]
dc.identifier.arxiv1002.1139
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-00453509
hal.version1
hal.audienceNon spécifiée
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00453509v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=STOICA,%20Codruta&rft.genre=preprint


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée