Afficher la notice abrégée

hal.structure.identifiervon Karman Institute for Fluid Dynamics [VKI]
dc.contributor.authorDOBEŠ, Jiří
hal.structure.identifierParallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorRICCHIUTO, Mario
hal.structure.identifierParallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorABGRALL, Rémi
hal.structure.identifiervon Karman Institute for Fluid Dynamics [VKI]
dc.contributor.authorDECONINCK, Herman
dc.date.accessioned2024-04-04T02:29:21Z
dc.date.available2024-04-04T02:29:21Z
dc.date.issued2010-03-03
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/190167
dc.description.abstractEnWe present an extension of multidimensional upwind residual distribution schemes to viscous flows. Following (Ricchiuto et al. , J.Comp.Appl.Math. 2007), we consider the consistent coupling of a residual distribution (RD) discretization of the advection operator with a Galerkin approximation for the second order derivatives. Consistency is intended in the sense of uniform accuracy with respect to variations of the mesh size or, equivalently, for the advection diffusion equation, of the Peclet number. Starting from the scalar formulation given in (Ricchiuto et al. , J.Comp.Appl.Math. 2007), we perform an accuracy and stability analysis to justify and extend the approach to the time-dependent case. The theoretical predictions are cofirmed by numerical grid convergence studies. The schemes are formally extended to the system of laminar Navier-Stokes equations, and compared to more classical finite volume discretizations on the solution of standard test problems.
dc.language.isoen
dc.subject.ennumerical analysis
dc.subject.ensecond order schemes
dc.subject.enparabolic problems
dc.subject.enresidual distribution
dc.subject.enuniform accuracy
dc.subject.enunstructured grids
dc.title.enAnalysis of hybrid RD-Galerkin schemes for Navier-Stokes simulations
dc.typeRapport
dc.subject.halMathématiques [math]/Analyse numérique [math.NA]
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.type.institutionINRIA
bordeaux.type.reportrr
hal.identifierinria-00461072
hal.version1
hal.audienceNon spécifiée
hal.origin.linkhttps://hal.archives-ouvertes.fr//inria-00461072v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.date=2010-03-03&rft.au=DOBE%C5%A0,%20Ji%C5%99%C3%AD&RICCHIUTO,%20Mario&ABGRALL,%20R%C3%A9mi&DECONINCK,%20Herman&rft.genre=unknown


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée