Afficher la notice abrégée

hal.structure.identifierMathematisches Institut, FSU Jena
dc.contributor.authorMATVEEV, Vladimir
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorMOUNOUD, Pierre
dc.date.accessioned2024-04-04T02:29:20Z
dc.date.available2024-04-04T02:29:20Z
dc.date.created2009-09-29
dc.date.issued2010
dc.identifier.issn0232-704X
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/190165
dc.description.abstractEnWe extend the Gallot-Tanno Theorem to closed pseudo-Riemannian manifolds. It is done by showing that if the cone over a manifold admits a parallel symmetric $(0,2)-$tensor then it is Riemannian. Applications of this result to the existence of metrics with distinct Levi-Civita connections but having the same unparametrized geodesics and to the projective Obata conjecture are given. We also apply our result to show that the holonomy group of a closed $(O(p+1,q),S^{p,q})$-manifold does not preserve any nondegenerate splitting of $\R^{p+1,q}$.
dc.language.isoen
dc.publisherSpringer Verlag
dc.title.enGallot-Tanno Theorem for closed incomplete pseudo-Riemannian manifolds and applications.
dc.typeArticle de revue
dc.identifier.doi10.1007/s10455-010-9211-7
dc.subject.halMathématiques [math]/Géométrie différentielle [math.DG]
dc.identifier.arxiv0909.5344
bordeaux.journalAnnals of Global Analysis and Geometry
bordeaux.page259-271
bordeaux.volume38
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue3
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00420655
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00420655v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Annals%20of%20Global%20Analysis%20and%20Geometry&rft.date=2010&rft.volume=38&rft.issue=3&rft.spage=259-271&rft.epage=259-271&rft.eissn=0232-704X&rft.issn=0232-704X&rft.au=MATVEEV,%20Vladimir&MOUNOUD,%20Pierre&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée