Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierLithe and fast algorithmic number theory [LFANT]
dc.contributor.authorCOHEN, Henri
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierLithe and fast algorithmic number theory [LFANT]
dc.contributor.authorMORRA, Anna
dc.date.accessioned2024-04-04T02:29:17Z
dc.date.available2024-04-04T02:29:17Z
dc.date.created2010-03-09
dc.date.issued2011-01-01
dc.identifier.issn0021-8693
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/190162
dc.description.abstractEnGiven a number field $k$ and a quadratic extension $K_2$, we give an explicit asymptotic formula for the number of isomorphism classes of cubic extensions of $k$ whose Galois closure contains $K_2$ as quadratic subextension, ordered by the norm of their relative discriminant ideal. The main tool is Kummer theory. We also study in detail the error term of the asymptotics and show that it is $O(X^{\alpha})$, for an explicit $\alpha<1$.
dc.language.isoen
dc.publisherElsevier
dc.title.enCounting Cubic Extensions with given Quadratic Resolvent
dc.typeArticle de revue
dc.identifier.doi10.1016/j.jalgebra.2010.08.027
dc.subject.halMathématiques [math]/Théorie des nombres [math.NT]
dc.identifier.arxiv1003.1869
bordeaux.journalJournal of Algebra
bordeaux.page461-478
bordeaux.volume325
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00463533
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00463533v1
bordeaux.COinSctx_ver=Z39.88-2004&amp;rft_val_fmt=info:ofi/fmt:kev:mtx:journal&amp;rft.jtitle=Journal%20of%20Algebra&amp;rft.date=2011-01-01&amp;rft.volume=325&amp;rft.spage=461-478&amp;rft.epage=461-478&amp;rft.eissn=0021-8693&amp;rft.issn=0021-8693&amp;rft.au=COHEN,%20Henri&amp;MORRA,%20Anna&amp;rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée