Extremely weak interpolation in $H^{\infty}$
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | HARTMANN, Andreas | |
dc.date.accessioned | 2024-04-04T02:28:38Z | |
dc.date.available | 2024-04-04T02:28:38Z | |
dc.date.created | 2010 | |
dc.date.issued | 2012 | |
dc.identifier.issn | 0002-9939 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/190110 | |
dc.description.abstractEn | Given a sequence of points in the unit disk, a well known result due to Carleson states that if given any point of the sequence it is possible to interpolate the value one in that point and zero in all the other points of the sequence, with uniform control of the norm in the Hardy space of bounded analytic functions on the disk, then the sequence is an interpolating sequence (i.e.\ every bounded sequence of values can be interpolated by functions in the Hardy space). It turns out that such a result holds in other spaces. In this short note we would like to show that for a given sequence it is sufficient to find just {\bf one} function interpolating suitably zeros and ones to deduce interpolation in the Hardy space. | |
dc.description.sponsorship | / - ANR-09-BLAN-0058 | |
dc.language.iso | en | |
dc.publisher | American Mathematical Society | |
dc.subject.en | Hardy spaces | |
dc.subject.en | Interpolating sequences | |
dc.subject.en | Weak interpolation | |
dc.title.en | Extremely weak interpolation in $H^{\infty}$ | |
dc.type | Article de revue | |
dc.subject.hal | Mathématiques [math]/Variables complexes [math.CV] | |
dc.identifier.arxiv | 1010.3493 | |
bordeaux.journal | Proceedings of the American Mathematical Society | |
bordeaux.page | 2411-2416 | |
bordeaux.volume | 140 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-00526930 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00526930v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Proceedings%20of%20the%20American%20Mathematical%20Society&rft.date=2012&rft.volume=140&rft.spage=2411-2416&rft.epage=2411-2416&rft.eissn=0002-9939&rft.issn=0002-9939&rft.au=HARTMANN,%20Andreas&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |