Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierTools of automatic control for scientific computing, Models and Methods in Biomathematics [ANUBIS]
dc.contributor.authorDUCROT, Arnaud
hal.structure.identifierTools of automatic control for scientific computing, Models and Methods in Biomathematics [ANUBIS]
dc.contributor.authorGUYONNE, Vincent
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierTools of automatic control for scientific computing, Models and Methods in Biomathematics [ANUBIS]
dc.contributor.authorLANGLAIS, Michel
dc.date.accessioned2024-04-04T02:28:04Z
dc.date.available2024-04-04T02:28:04Z
dc.date.created2009-02
dc.date.issued2011-02
dc.identifier.issn1937-1632
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/190067
dc.description.abstractEnWe are interested in the dynamical behaviour of the solution set to a two component reaction–diffusion system posed on non coincident spatial do- mains. The underlying biological problem is a predator–prey system featuring a non local numerical response to predation involving an integral kernel. Quite interesting while complex dynamics emerge from preliminary numerical simu- lations, driven both by diffusivities and by the parametric form or shape of the integral kernel. We consider a simplified version of this problem, with constant coefficients, and give some hints on the large time dynamics of solutions.
dc.language.isoen
dc.publisherAmerican Institute of Mathematical Sciences
dc.subject.enReaction-Diffusion system
dc.subject.ennon-coincident spatial domains
dc.subject.enstationary solutions
dc.subject.endegree theory
dc.subject.enpersistence
dc.title.enSome remarks on the qualitative properties of solutions to a predator–prey model posed on non coincident spatial domains
dc.typeArticle de revue
dc.identifier.doi10.3934/dcdss.2011.4.67
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
dc.subject.halSciences du Vivant [q-bio]/Ecologie, Environnement/Ecosystèmes
bordeaux.journalDiscrete and Continuous Dynamical Systems - Series S
bordeaux.page67-82
bordeaux.volume4
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue1
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00541302
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00541302v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Discrete%20and%20Continuous%20Dynamical%20Systems%20-%20Series%20S&rft.date=2011-02&rft.volume=4&rft.issue=1&rft.spage=67-82&rft.epage=67-82&rft.eissn=1937-1632&rft.issn=1937-1632&rft.au=DUCROT,%20Arnaud&GUYONNE,%20Vincent&LANGLAIS,%20Michel&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée