Boundary data completion: the method of boundary value problem factorization
hal.structure.identifier | Laboratoire de Modélisation Mathématique et Numérique dans les Sciences de l'Ingénieur [Tunis] [LR-LAMSIN-ENIT] | |
dc.contributor.author | BEN ABDA, Amel | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
hal.structure.identifier | Tools of automatic control for scientific computing, Models and Methods in Biomathematics [ANUBIS] | |
dc.contributor.author | HENRY, Jacques | |
hal.structure.identifier | Laboratoire de Modélisation Mathématique et Numérique dans les Sciences de l'Ingénieur [Tunis] [LR-LAMSIN-ENIT] | |
dc.contributor.author | JDAY, Fadhel | |
dc.date.accessioned | 2024-04-04T02:26:48Z | |
dc.date.available | 2024-04-04T02:26:48Z | |
dc.date.issued | 2011-04-18 | |
dc.identifier.issn | 0266-5611 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/189983 | |
dc.description.abstractEn | We consider the following data completion problem for the Laplace equation in the cylindrical domain: = ]0, a[×O,O ⊂ Rn−1 (O is a smooth bounded open set anda > 0), limited by the faces 0 = {0}×O and a = {a}×O. The Neumann and Dirichlet boundary conditions are given on 0 while no condition is given on a. The completion data problem consists in recovering a boundary condition on a. This problem has been known to be ill-posed since Hadamard [12]. The problem is set as an optimal control problem with a regularized cost function. To obtain directly an approximation of the missing data on a we use the method of factorization of elliptic boundary value problems. This method allows us to factorize a boundary value problem in the product of two parabolic problems. Here it is applied to the optimality system (i.e. jointly on the state and adjoint state equations). | |
dc.language.iso | en | |
dc.publisher | IOP Publishing | |
dc.title.en | Boundary data completion: the method of boundary value problem factorization | |
dc.type | Article de revue | |
dc.identifier.doi | 10.1088/0266-5611/27/5/055014 | |
dc.subject.hal | Mathématiques [math]/Equations aux dérivées partielles [math.AP] | |
bordeaux.journal | Inverse Problems | |
bordeaux.volume | 27 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.issue | 5 | |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | inria-00617511 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Internationale | |
hal.origin.link | https://hal.archives-ouvertes.fr//inria-00617511v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Inverse%20Problems&rft.date=2011-04-18&rft.volume=27&rft.issue=5&rft.eissn=0266-5611&rft.issn=0266-5611&rft.au=BEN%20ABDA,%20Amel&HENRY,%20Jacques&JDAY,%20Fadhel&rft.genre=article |
Files in this item
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |