Mostrar el registro sencillo del ítem

hal.structure.identifierLaboratoire de Modélisation Mathématique et Numérique dans les Sciences de l'Ingénieur [Tunis] [LR-LAMSIN-ENIT]
dc.contributor.authorBEN ABDA, Amel
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierTools of automatic control for scientific computing, Models and Methods in Biomathematics [ANUBIS]
dc.contributor.authorHENRY, Jacques
hal.structure.identifierLaboratoire de Modélisation Mathématique et Numérique dans les Sciences de l'Ingénieur [Tunis] [LR-LAMSIN-ENIT]
dc.contributor.authorJDAY, Fadhel
dc.date.accessioned2024-04-04T02:26:48Z
dc.date.available2024-04-04T02:26:48Z
dc.date.issued2011-04-18
dc.identifier.issn0266-5611
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/189983
dc.description.abstractEnWe consider the following data completion problem for the Laplace equation in the cylindrical domain: = ]0, a[×O,O ⊂ Rn−1 (O is a smooth bounded open set anda > 0), limited by the faces 0 = {0}×O and a = {a}×O. The Neumann and Dirichlet boundary conditions are given on 0 while no condition is given on a. The completion data problem consists in recovering a boundary condition on a. This problem has been known to be ill-posed since Hadamard [12]. The problem is set as an optimal control problem with a regularized cost function. To obtain directly an approximation of the missing data on a we use the method of factorization of elliptic boundary value problems. This method allows us to factorize a boundary value problem in the product of two parabolic problems. Here it is applied to the optimality system (i.e. jointly on the state and adjoint state equations).
dc.language.isoen
dc.publisherIOP Publishing
dc.title.enBoundary data completion: the method of boundary value problem factorization
dc.typeArticle de revue
dc.identifier.doi10.1088/0266-5611/27/5/055014
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
bordeaux.journalInverse Problems
bordeaux.volume27
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue5
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierinria-00617511
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//inria-00617511v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Inverse%20Problems&rft.date=2011-04-18&rft.volume=27&rft.issue=5&rft.eissn=0266-5611&rft.issn=0266-5611&rft.au=BEN%20ABDA,%20Amel&HENRY,%20Jacques&JDAY,%20Fadhel&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem