Mostrar el registro sencillo del ítem

hal.structure.identifierInstitut Européen de Génomique du Diabète - European Genomic Institute for Diabetes - FR 3508 [EGID]
dc.contributor.authorYANG, Bao
hal.structure.identifierInstitut Européen de Génomique du Diabète - European Genomic Institute for Diabetes - FR 3508 [EGID]
dc.contributor.authorLI, Gengxiang
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierQuality control and dynamic reliability [CQFD]
dc.contributor.authorZHANG, Huilong
hal.structure.identifierInstitut Européen de Génomique du Diabète - European Genomic Institute for Diabetes - FR 3508 [EGID]
dc.contributor.authorDAI, Mo
dc.date.accessioned2024-04-04T02:26:07Z
dc.date.available2024-04-04T02:26:07Z
dc.date.issued2011-07
dc.identifier.issn0167-8655
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/189931
dc.description.abstractEnGeometric moment invariants are widely used in many fields of image analysis and pattern recognition since their first introduction by Hu in 1962. A few years ago, Flusser has proved how to find the indepen- dent and complete set of geometric moment invariants corresponding to a given order. On the other hand, the properties of orthogonal moments show that they can be recognized as useful tools for image representation and reconstruction. Therefore, derivation of invariants from orthogonal moments becomes an interesting subject and some results have been reported in literature. In this paper, we pro- pose to use a family of orthogonal moments, called Gaussian-Hermite moments and defined with Her- mite polynomials, for deriving their corresponding invariants. The rotation invariants of Gaussian- Hermite moments can be achieved algebraically according to a property of Hermite polynomials. This approach is definitely different from the conventional methods which derive orthogonal moment invari- ants either by image normalization or by an expression as a linear combination of the invariants of geo- metric moments. One significant conclusion drawn is that the rotation invariants of Gaussian-Hermite moments have the identical forms to those of geometric moments. This coincidence is also proved math- ematically in the appendix of the paper. Moreover, the translation invariants could be easily constructed by translating the coordinate origin to the image centroid. The invariants of Gaussian-Hermite moments both to rotation and to translation are accomplished by the combination of these two kinds of invariants. Their rotational and translational invariance is evaluated by a set of transformed gray-level images. The numeric stabilities of the proposed invariant descriptors are also discussed under both noise-free and noisy conditions. The computational complexity and time for implementing such invariants are analyzed as well. In addition to this, the better performance of the Gaussian-Hermite invariants is experimentally demonstrated by pattern matching in comparison with geometric moment invariants.
dc.language.isoen
dc.publisherElsevier
dc.title.enRotation and translation invariants of Gaussian-Hermite moments
dc.typeArticle de revue
dc.identifier.doi10.1016/j.patrec.2011.03.012
dc.subject.halInformatique [cs]/Traitement des images
bordeaux.journalPattern Recognition Letters
bordeaux.page1283-1298
bordeaux.volume32
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue9
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00648097
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00648097v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Pattern%20Recognition%20Letters&rft.date=2011-07&rft.volume=32&rft.issue=9&rft.spage=1283-1298&rft.epage=1283-1298&rft.eissn=0167-8655&rft.issn=0167-8655&rft.au=YANG,%20Bao&LI,%20Gengxiang&ZHANG,%20Huilong&DAI,%20Mo&rft.genre=article


Archivos en el ítem

ArchivosTamañoFormatoVer

No hay archivos asociados a este ítem.

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem