Mostrar el registro sencillo del ítem
A well-posedness result for hyperbolic operators with Zygmund coefficients
hal.structure.identifier | Dipartimento di Matematica | |
dc.contributor.author | COLOMBINI, Ferruccio | |
hal.structure.identifier | Università degli studi di Trieste = University of Trieste | |
dc.contributor.author | DEL SANTO, Daniele | |
hal.structure.identifier | Laboratoire d'Analyse et de Mathématiques Appliquées [LAMA] | |
dc.contributor.author | FANELLI, Francesco | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | METIVIER, Guy | |
dc.date.accessioned | 2024-04-04T02:24:35Z | |
dc.date.available | 2024-04-04T02:24:35Z | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/189827 | |
dc.description.abstractEn | In this paper we prove an energy estimate with no loss of derivatives for a strictly hyperbolic operator with Zygmund continuous second order coe fficients both in time and in space. In particular, this estimate implies the well-posedness for the related Cauchy problem. On the one hand, this result is quite surprising, because it allows to consider coe cients which are not Lipschitz continuous in time. On the other hand, it holds true only in the very special case of initial data in H^(1/2) - H^(-1/2). Paradi erential calculus with parameters is the main ingredient to the proof. | |
dc.language.iso | en | |
dc.title.en | A well-posedness result for hyperbolic operators with Zygmund coefficients | |
dc.type | Document de travail - Pré-publication | |
dc.subject.hal | Mathématiques [math]/Equations aux dérivées partielles [math.AP] | |
dc.description.sponsorshipEurope | New analytical and numerical methods in wave propagation | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
hal.identifier | hal-00733564 | |
hal.version | 1 | |
hal.audience | Non spécifiée | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00733564v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=COLOMBINI,%20Ferruccio&DEL%20SANTO,%20Daniele&FANELLI,%20Francesco&METIVIER,%20Guy&rft.genre=preprint |
Archivos en el ítem
Archivos | Tamaño | Formato | Ver |
---|---|---|---|
No hay archivos asociados a este ítem. |