Afficher la notice abrégée

hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
dc.contributor.authorDELEDALLE, Charles-Alban
hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
dc.contributor.authorVAITER, Samuel
hal.structure.identifierCEntre de REcherches en MAthématiques de la DEcision [CEREMADE]
dc.contributor.authorPEYRÉ, Gabriel
hal.structure.identifierEquipe Image - Laboratoire GREYC - UMR6072
dc.contributor.authorFADILI, Jalal M.
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorDOSSAL, Charles
dc.date.accessioned2024-04-04T02:24:20Z
dc.date.available2024-04-04T02:24:20Z
dc.date.created2012-05-07
dc.date.conference2012-06-30
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/189811
dc.description.abstractEnIn this paper, we develop an approach to recursively estimate the quadratic risk for matrix recovery problems regularized with spectral functions. Toward this end, in the spirit of the SURE theory, a key step is to compute the (weak) derivative and divergence of a solution with respect to the observations. As such a solution is not available in closed form, but rather through a proximal splitting algorithm, we propose to recursively compute the divergence from the sequence of iterates. A second challenge that we unlocked is the computation of the (weak) derivative of the proximity operator of a spectral function. To show the potential applicability of our approach, we exemplify it on a matrix completion problem to objectively and automatically select the regularization parameter.
dc.language.isoen
dc.subject.enRisk estimation
dc.subject.enSURE
dc.subject.enmatrix recovery
dc.subject.enmatrix completion
dc.subject.enmatrix-valued function
dc.subject.enspectral regularization
dc.subject.ennuclear norm
dc.subject.enproximal algorithms
dc.title.enRisk estimation for matrix recovery with spectral regularization
dc.typeCommunication dans un congrès
dc.subject.halMathématiques [math]/Statistiques [math.ST]
dc.subject.halMathématiques [math]/Théorie de l'information et codage [math.IT]
dc.subject.halInformatique [cs]/Apprentissage [cs.LG]
dc.subject.halInformatique [cs]/Traitement du signal et de l'image
dc.subject.halInformatique [cs]/Théorie de l'information [cs.IT]
dc.subject.halStatistiques [stat]/Machine Learning [stat.ML]
dc.subject.halStatistiques [stat]/Théorie [stat.TH]
dc.subject.halSciences de l'ingénieur [physics]/Traitement du signal et de l'image
dc.identifier.arxiv1205.1482
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.conference.titleICML'2012 workshop on Sparsity, Dictionaries and Projections in Machine Learning and Signal Processing
bordeaux.countryGB
bordeaux.conference.cityEdinburgh
bordeaux.peerReviewedoui
hal.identifierhal-00695326
hal.version1
hal.invitednon
hal.proceedingsnon
hal.conference.end2012-07-01
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00695326v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=DELEDALLE,%20Charles-Alban&VAITER,%20Samuel&PEYR%C3%89,%20Gabriel&FADILI,%20Jalal%20M.&DOSSAL,%20Charles&rft.genre=unknown


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée