Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorMETIVIER, Guy
hal.structure.identifierDepartment of Mathematics - University of Michigan
dc.contributor.authorRAUCH, Jeffrey
dc.date.accessioned2024-04-04T02:23:01Z
dc.date.available2024-04-04T02:23:01Z
dc.date.created2011
dc.date.issued2011
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/189693
dc.description.abstractEnThe profile equations of geometric optics are described in a form invariant under the natural transformations of first order systems of partial differential equations. This allows us to prove that various strategies for computing profile equations are equivalent. We prove that if $L$ generates an evolution on $L^2$ the same is true of the profile equations. We prove that the characteristic polynomial of the profile equations is the localization of the characteristic polynomial of the background operator at $(y,d\phi(y))$ where $\phi$ is the background phase. We prove that the propagation cones of the profile equations are subsets of the propagation cones of the background operator.
dc.language.isoen
dc.title.enInvariance and stability of the profile equations of geometric optics
dc.typeArticle de revue
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
bordeaux.journalActa Math.Sci.Ser Engl Ed
bordeaux.pagepp2141--2158
bordeaux.volume31
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00777132
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00777132v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Acta%20Math.Sci.Ser%20Engl%20Ed&rft.date=2011&rft.volume=31&rft.spage=pp2141--2158&rft.epage=pp2141--2158&rft.au=METIVIER,%20Guy&RAUCH,%20Jeffrey&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée