On the growth of the polynomial entropy integrals for measures in the Szegö class
hal.structure.identifier | Department of Mathematics [Madison] | |
dc.contributor.author | DENISSOV, Sergey | |
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | KUPIN, Stanislas | |
dc.date.accessioned | 2024-04-04T02:22:44Z | |
dc.date.available | 2024-04-04T02:22:44Z | |
dc.date.created | 2012 | |
dc.date.issued | 2013 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/189670 | |
dc.description.abstractEn | Let be a probability Borel measure on the unit circle T and f ng be the orthonormal polynomials with respect to . We say tRhat is a Szego measure, if it has an arbitrary singular part s, and T log 0dm > -∞, 1, where 0 is the density of the absolutely continuous part of , m being the normalized Lebesgue measure on T. The entropy integrals for n are de ned as n = Z T j nj2 log j njd It is not di cult to show that n = o( p n). In this paper, we construct a measure from the Szego class for which this estimate is sharp (over a subsequence of n's). | |
dc.language.iso | en | |
dc.subject.en | Entropy integrals | |
dc.subject.en | orthogonal polynomials | |
dc.subject.en | Schur parameters | |
dc.subject.en | Szegö class. | |
dc.subject.en | Szegö class | |
dc.title.en | On the growth of the polynomial entropy integrals for measures in the Szegö class | |
dc.type | Article de revue | |
dc.subject.hal | Mathématiques [math]/Théorie spectrale [math.SP] | |
dc.subject.hal | Mathématiques [math]/Variables complexes [math.CV] | |
bordeaux.journal | Adv. in Maths | |
bordeaux.page | 18-32 | |
bordeaux.volume | 241 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
bordeaux.peerReviewed | oui | |
hal.identifier | hal-00781337 | |
hal.version | 1 | |
hal.popular | non | |
hal.audience | Non spécifiée | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00781337v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Adv.%20in%20Maths&rft.date=2013&rft.volume=241&rft.spage=18-32&rft.epage=18-32&rft.au=DENISSOV,%20Sergey&KUPIN,%20Stanislas&rft.genre=article |
Fichier(s) constituant ce document
Fichiers | Taille | Format | Vue |
---|---|---|---|
Il n'y a pas de fichiers associés à ce document. |