Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorBRULL, Stéphane
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorCHARRIER, Pierre
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorMIEUSSENS, Luc
dc.date.accessioned2024-04-04T02:22:04Z
dc.date.available2024-04-04T02:22:04Z
dc.date.created2013-05-24
dc.date.issued2014
dc.identifier.issn1937-5093
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/189624
dc.description.abstractEnIn this paper we revisit the derivation of boundary conditions for the Boltzmann Equation. The interaction between the wall atoms and the gas molecules within a thin surface layer is described by a kinetic equation introduced in [9] and used in [1]. This equation includes a Vlasov term and a linear molecule-phonon collision term and is coupled with the Boltzmann equation describing the evolution of the gas in the bulk flow. Boundary conditions are formally derived from this model by using classical tools of kinetic theory such as scaling and systematic asymptotic expansion. In a first step this method is applied to the simplified case of a flat wall. Then it is extented to walls with nanoscale roughness allowing to obtain more complex scattering patterns related to the morphology of the wall. It is proved that the obtained scattering kernels satisfy the classical imposed properties of non-negativeness, normalization and reciprocity introduced by Cercignani [11].
dc.language.isoen
dc.publisherAIMS
dc.subject.ennano flows
dc.subject.ensurface layer
dc.subject.enMaxwell boundary conditions.
dc.subject.enMaxwell boundary conditions
dc.title.enGas-surface interaction and boundary conditions for the Boltzmann equation
dc.typeArticle de revue
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
dc.subject.halMathématiques [math]/Analyse numérique [math.NA]
dc.identifier.arxiv1306.4309
bordeaux.journalKinetic and Related Models
bordeaux.page1-33
bordeaux.volume7
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue2
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00826005
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00826005v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Kinetic%20and%20Related%20Models&rft.date=2014&rft.volume=7&rft.issue=2&rft.spage=1-33&rft.epage=1-33&rft.eissn=1937-5093&rft.issn=1937-5093&rft.au=BRULL,%20St%C3%A9phane&CHARRIER,%20Pierre&MIEUSSENS,%20Luc&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée