Afficher la notice abrégée

hal.structure.identifierUniversità degli Studi di Modena e Reggio Emilia = University of Modena and Reggio Emilia [UNIMORE]
dc.contributor.authorALBA MARTÍNEZ, Manuel
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierReformulations based algorithms for Combinatorial Optimization [Realopt]
dc.contributor.authorCLAUTIAUX, François
hal.structure.identifierUniversità degli Studi di Modena e Reggio Emilia = University of Modena and Reggio Emilia [UNIMORE]
dc.contributor.authorDELL'AMICO, Mauro
hal.structure.identifierUniversità degli Studi di Modena e Reggio Emilia = University of Modena and Reggio Emilia [UNIMORE]
dc.contributor.authorIORI, Manuel
dc.date.accessioned2024-04-04T02:20:54Z
dc.date.available2024-04-04T02:20:54Z
dc.date.created2013
dc.date.issued2013-08-31
dc.identifier.issn1572-5286
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/189529
dc.description.abstractEnWe are given a set of objects, each characterized by a weight and a fragility, and a large number of uncapacitated bins. Our aim is to find the minimum number of bins needed to pack all objects, in such a way that in each bin the sum of the object weights is less than or equal to the smallest fragility of an object in the bin. The problem is known in the literature as the Bin Packing Problem with Fragile Objects, and appears in the telecommunication field, when one has to assign cellular calls to available channels by ensuring that the total noise in a channel does not exceed the noise acceptance limit of a call.We propose a branch-and-bound and several branch-and-price algorithms for the exact solution of the problem, and improve their performance by the use of lower bounds and tailored optimization techniques. In addition we also develop algorithms for the optimal solution of the related knapsack problem with fragile objects. We conduct an extensive computational evaluation on the benchmark set of instances, and show that the proposed algorithms perform very well.
dc.language.isoen
dc.publisherElsevier
dc.title.enExact algorithms for the bin packing problem with fragile objects
dc.typeArticle de revue
dc.identifier.doi10.1016/j.disopt.2013.06.001
dc.subject.halInformatique [cs]/Recherche opérationnelle [cs.RO]
bordeaux.journalDiscrete Optimization
bordeaux.page210-223
bordeaux.volume10
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue3
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00909480
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00909480v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Discrete%20Optimization&rft.date=2013-08-31&rft.volume=10&rft.issue=3&rft.spage=210-223&rft.epage=210-223&rft.eissn=1572-5286&rft.issn=1572-5286&rft.au=ALBA%20MART%C3%8DNEZ,%20Manuel&CLAUTIAUX,%20Fran%C3%A7ois&DELL'AMICO,%20Mauro&IORI,%20Manuel&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée