Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorBACHOC, Christine
dc.contributor.authorRUZSA, Imre Z.
hal.structure.identifierRenyi Institute
dc.contributor.authorMATOLCSI, Mate
dc.date.accessioned2024-04-04T02:20:52Z
dc.date.available2024-04-04T02:20:52Z
dc.date.created2013-05-02
dc.date.issued2013
dc.identifier.issn1553-1732
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/189525
dc.description.abstractEnFor infinitely many primes $p=4k+1$ we give a slightly improved upper bound for the maximal cardinality of a set $B\subset \ZZ_p$ such that the difference set $B-B$ contains only quadratic residues. Namely, instead of the "trivial" bound $|B|\leq \sqrt{p}$ we prove $|B|\leq \sqrt{p}-1$, under suitable conditions on $p$. The new bound is valid for approximately three quarters of the primes $p=4k+1$.
dc.language.isoen
dc.publisherState University of West Georgia, Charles University, and DIMATIA
dc.title.enSquares and difference sets in finite fields
dc.typeArticle de revue
dc.subject.halMathématiques [math]/Combinatoire [math.CO]
dc.subject.halMathématiques [math]/Théorie des nombres [math.NT]
dc.identifier.arxiv1305.0577
bordeaux.journalIntegers : Electronic Journal of Combinatorial Number Theory
bordeaux.page5 pp
bordeaux.volume13
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00911682
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00911682v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Integers%20:%20Electronic%20Journal%20of%20Combinatorial%20Number%20Theory&rft.date=2013&rft.volume=13&rft.spage=5%20pp&rft.epage=5%20pp&rft.eissn=1553-1732&rft.issn=1553-1732&rft.au=BACHOC,%20Christine&RUZSA,%20Imre%20Z.&MATOLCSI,%20Mate&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée