Afficher la notice abrégée

hal.structure.identifierLaboratoire d'Informatique de Paris-Nord [LIPN]
dc.contributor.authorBORNE, Sylvie
hal.structure.identifierRecherche Opérationnelle [RO]
dc.contributor.authorFOUILHOUX, Pierre
hal.structure.identifierLaboratoire d'Informatique de Paris-Nord [LIPN]
dc.contributor.authorGRAPPE, Roland
hal.structure.identifierLaboratoire d'Informatique de Paris-Nord [LIPN]
dc.contributor.authorLACROIX, Mathieu
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
hal.structure.identifierReformulations based algorithms for Combinatorial Optimization [Realopt]
dc.contributor.authorPESNEAU, Pierre
dc.date.accessioned2024-04-04T02:19:47Z
dc.date.available2024-04-04T02:19:47Z
dc.date.created2014
dc.date.conference2014-02-26
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/189437
dc.description.abstractEn<p align="JUSTIFY">Let G=(V,E) be an undirected connected graph. Let W be a subset of V, distinct from V. The set W is said proper when it is non-empty. We denote by δ(W), the set of edges of E having exactly one endnode in W. A set F is called a cut of G, if there exists a proper subset W of V such that F=δ(W). Note that removing from a graph the edges of a cut can leave more than 2 connected components. Consequently, a cut is said to be connected if both subgraphs G[W] =(W,E(W)) and G[V\W] =(V\W,E(V\W)) are connected.</p> <p align="JUSTIFY">Let c be a cost function defined on the edges of E, the maximum cut problem (Max-C) consists in finding a cut of maximum weight (where the weight of a cut is given by the summation of the costs of all the edges composing the cut). The particular case where the cost function is non-positive is called the minimum cut problem (Min-C). In a similar way, we can define the maximum (resp. minimum) connected cut problem Max-CC (resp. Min-CC) as finding a maximum cost connected cut.</p> <p align="JUSTIFY">It is easily seen that an optimal solution of the Min-C will be a connected cut and thus an optimal solution of the Min-CC. Consequently the Min-CC can be solved in polynomial time. The Max-C is strongly NP-hard. However, when the graph is planar, the Max-C problem can be solved in polynomial time [1], whereas the Max-CC is still NP-hard [2].</p> <p align="JUSTIFY">In this talk, we present integer formulations for the Max-CC together with preliminary results on the associated polytope. We also propose a Branch-and-Cut algorithm in order to solve instances generated from the TSPLIB.</p> <p align="JUSTIFY">[1] F. Hadlock, Finding a maximum cut of a planar graph in polynomial time, SIAM Journal of Computing vol. 4 (1975) 221-225.<br />[2] Haglin, Venkatesan, Approximation and Intractability results for the maximum cut problem and its variants, IEEE Trans. on computers 40 (1991) 110-113.</p> <p> </p>
dc.language.isofr
dc.subject.encut
dc.subject.enpolyedral approach
dc.subject.enBranch
dc.subject.enand
dc.subject.enGraph
dc.title.enBranch-and-Cut algorithm for the connected-cut problem
dc.typeCommunication dans un congrès
dc.subject.halInformatique [cs]/Recherche opérationnelle [cs.RO]
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.conference.titleROADEF - 15ème congrès annuel de la Société française de recherche opérationnelle et d'aide à la décision
bordeaux.countryFR
bordeaux.conference.cityBordeaux
bordeaux.peerReviewedoui
hal.identifierhal-00946285
hal.version1
hal.invitednon
hal.proceedingsnon
hal.conference.organizerSociété française de recherche opérationnelle et d'aide à la décision
hal.conference.end2014-02-28
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00946285v1
bordeaux.COinSctx_ver=Z39.88-2004&amp;rft_val_fmt=info:ofi/fmt:kev:mtx:journal&amp;rft.au=BORNE,%20Sylvie&amp;FOUILHOUX,%20Pierre&amp;GRAPPE,%20Roland&amp;LACROIX,%20Mathieu&amp;PESNEAU,%20Pierre&amp;rft.genre=unknown


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée