Afficher la notice abrégée

dc.contributor.authorKUHLMANN, Salma
hal.structure.identifierÉquipe Géométrie
dc.contributor.authorMATUSINSKI, Mickael
dc.date.accessioned2024-04-04T02:19:38Z
dc.date.available2024-04-04T02:19:38Z
dc.date.created2012-03-20
dc.date.issued2015-03-01
dc.identifier.issn0167-8094
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/189422
dc.description.abstractEnIn his monograph, H. Gonshor showed that Conway's real closed field of surreal numbers carries an exponential and logarithmic map. Subsequently, L. van den Dries and P. Ehrlich showed that it is a model of the elementary theory of the field of real numbers with the exponential function. In this paper, we give a complete description of the exponential equivalence classes in the spirit of the classical Archimedean and multiplicative equivalence classes. This description is made in terms of a recursive formula as well as a sign sequence formula for the family of representatives of minimal length of these exponential classes.
dc.language.isoen
dc.publisherSpringer Verlag
dc.title.enThe exponential-logarithmic equivalence classes of surreal numbers
dc.typeArticle de revue
dc.identifier.doi10.1007/s11083-013-9315-3
dc.subject.halMathématiques [math]/Algèbre commutative [math.AC]
dc.subject.halMathématiques [math]/Logique [math.LO]
dc.identifier.arxiv1203.4538
bordeaux.journalOrder
bordeaux.page53-68
bordeaux.volume32
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue1
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00947083
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00947083v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Order&rft.date=2015-03-01&rft.volume=32&rft.issue=1&rft.spage=53-68&rft.epage=53-68&rft.eissn=0167-8094&rft.issn=0167-8094&rft.au=KUHLMANN,%20Salma&MATUSINSKI,%20Mickael&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée