Afficher la notice abrégée

dc.contributor.authorENRICO, Bernardi
dc.contributor.authorBOVE, Antonio
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorPETKOV, Vesselin
dc.date.accessioned2024-04-04T02:19:33Z
dc.date.available2024-04-04T02:19:33Z
dc.date.created2013
dc.date.issued2014
dc.identifier.issn0764-4442
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/189415
dc.description.abstractEnWe study a class of third-order effectively hyperbolic operators P in G = { x \in U, 0 \leq t \leq T} with triple characteristics at ρ = (0, x_0, ξ), ξ ∈ R^n \ {0}. V. Ivrii introduced the conjecture that every effectively hyperbolic operator is strongly hyperbolic, that is the Cauchy problem for P + Q is locally well posed for any lower-order terms Q . For operators with triple characteristics, this conjecture was established by Ivrii in the case when the principal symbol of P admits a factorization as a product of two symbols of principal type. A strongly hyperbolic operator in G could have triple characteristics in G only for t = 0 or for t = T . The operators that we investigate have a principal symbol which in general is not factorizable and we prove that these operators are strongly hyperbolic if T is small enough.
dc.language.isoen
dc.publisherElsevier
dc.title.enCauchy problem for effectiively hyperbolic operators with triple characteristics
dc.typeArticle de revue
dc.subject.halMathématiques [math]/Equations aux dérivées partielles [math.AP]
bordeaux.journalComptes rendus de l'Académie des sciences. Série I, Mathématique
bordeaux.page109-112
bordeaux.volume352
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00947209
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00947209v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Comptes%20rendus%20de%20l'Acad%C3%A9mie%20des%20sciences.%20S%C3%A9rie%20I,%20Math%C3%A9matique&rft.date=2014&rft.volume=352&rft.spage=109-112&rft.epage=109-112&rft.eissn=0764-4442&rft.issn=0764-4442&rft.au=ENRICO,%20Bernardi&BOVE,%20Antonio&PETKOV,%20Vesselin&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée