Afficher la notice abrégée

hal.structure.identifierBrown University
dc.contributor.authorVILAR, François
hal.structure.identifierCentre d'études scientifiques et techniques d'Aquitaine (CESTA-CEA) [CESTA]
dc.contributor.authorMAIRE, P.H.
hal.structure.identifierParallel tools for Numerical Algorithms and Resolution of essentially Hyperbolic problems [BACCHUS]
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorABGRALL, Remi
dc.date.accessioned2024-04-04T02:19:32Z
dc.date.available2024-04-04T02:19:32Z
dc.date.created2014-02-15
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/189414
dc.description.abstractEnBased on the total Lagrangian kinematical description, a discontinuous Galerkin (DG) discretization of the gas dynamics equations is developed for two-dimensional fluid flows on general unstructured grids. Contrary to the updated Lagrangian formulation, which refers to the current moving configuration of the flow, the total Lagrangian formulation refers to the reference fixed configuration, which is usually the initial one. In this framework, the Lagrangian and Eulerian descriptions of the kinematical and the physical variables are related by means of the Piola transformation. Here, we describe a cell-centered high-order DG discretization of the physical conservation laws. The geometrical conservation law, which governs the time evolution of the deformation gradient, is solved by means of a finite element discretization. This approach allows to satisfy exactly the Piola compatibility condition. Regarding the DG approach, it relies on the use of a polynomial space approximation which is spanned by a Taylor basis. The main advantage in using this type of basis relies on its adaptability regardless the shape of the cell. The numerical fluxes at the cell interfaces are computed employing a node-based solver which can be viewed as an approximate Riemann solver. We present numerical results to illustrate the robustness and the accuracy up to third-order of our DG method. First, we show its ability to accurately capture geometrical features of a flow region employing curvilinear grids. Second, we demonstrate the dramatic improvement in symmetry preservation for radial flows.
dc.language.isoen
dc.subject.encell-centered scheme
dc.subject.enGodunov-type method
dc.subject.enunstructured moving grid
dc.subject.encurvilinear grid
dc.subject.engas dynamics
dc.subject.enupdated Lagrangian formulation
dc.subject.entotal Lagrangian formulation
dc.subject.enDiscontinuous Galerkin discretization
dc.title.enA total Lagrangian discontinuous Galerkin discretization of the two-dimensional gas dynamics equations
dc.typeDocument de travail - Pré-publication
dc.subject.halMathématiques [math]/Analyse numérique [math.NA]
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
hal.identifierhal-00947367
hal.version1
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00947367v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=VILAR,%20Fran%C3%A7ois&MAIRE,%20P.H.&ABGRALL,%20Remi&rft.genre=preprint


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée