Mostrar el registro sencillo del ítem
On the index system of well-rounded lattices
hal.structure.identifier | Institut de Mathématiques de Bordeaux [IMB] | |
dc.contributor.author | MARTINET, Jacques | |
dc.date.accessioned | 2024-04-04T02:19:14Z | |
dc.date.available | 2024-04-04T02:19:14Z | |
dc.date.created | 2012-02-10 | |
dc.identifier.uri | https://oskar-bordeaux.fr/handle/20.500.12278/189384 | |
dc.description.abstractEn | Let $\Lb$ be a lattice in an $n$-dimensional Euclidean space $E$ and let $\Lb'$ be a Minkowskian sublattice of $\Lb$, that is, a sublattice having a basis made of representatives for the Minkowski successive minima of $\Lb$. We consider the set of possible quotients $\Lb/\Lb'$ which may exists in a given dimension or among not too large values of the index $[\Lb:\Lb']$, indeed $[\Lb:\Lb']\le 4$, or dimension $n\le 8$. | |
dc.language.iso | en | |
dc.title.en | On the index system of well-rounded lattices | |
dc.type | Document de travail - Pré-publication | |
dc.subject.hal | Mathématiques [math]/Théorie des nombres [math.NT] | |
dc.identifier.arxiv | 1202.2295 | |
bordeaux.hal.laboratories | Institut de Mathématiques de Bordeaux (IMB) - UMR 5251 | * |
bordeaux.institution | Université de Bordeaux | |
bordeaux.institution | Bordeaux INP | |
bordeaux.institution | CNRS | |
hal.identifier | hal-00956656 | |
hal.version | 1 | |
hal.audience | Non spécifiée | |
hal.origin.link | https://hal.archives-ouvertes.fr//hal-00956656v1 | |
bordeaux.COinS | ctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.au=MARTINET,%20Jacques&rft.genre=preprint |
Archivos en el ítem
Archivos | Tamaño | Formato | Ver |
---|---|---|---|
No hay archivos asociados a este ítem. |