Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorAREGBA-DRIOLLET, Denise
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorHANOUZET, Bernard
dc.date.accessioned2024-04-04T02:19:01Z
dc.date.available2024-04-04T02:19:01Z
dc.date.created2010
dc.date.issued2011
dc.identifier.issn1539-6746
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/189369
dc.description.abstractEnThe electromagnetic wave propagation in a nonlinear medium can be described by a Kerr model in the case of an instantaneous response of the material, or by a Kerr-Debye model if the material exhibits a finite response time. Both models are quasilinear hyperbolic, and Kerr-Debye model is a physical relaxation approximation of Kerr model. In this paper we characterize the shocks in the Kerr model for which there exists a Kerr-Debye profile. First we consider 1D models for which explicit calculations are performed. Then we determine the plane discontinuities of the full vector 3D Kerr system and their admissibility in the sense of Liu and in the sense of Lax. At last we characterize the large amplitude Kerr shocks giving rise to the existence of Kerr-Debye relaxation profiles.
dc.language.isoen
dc.publisherInternational Press
dc.title.enKerr-Debye Relaxation Shock Profiles for Kerr Equations
dc.typeArticle de revue
dc.subject.halMathématiques [math]/Analyse numérique [math.NA]
bordeaux.journalCommunications in Mathematical Sciences
bordeaux.page1-31
bordeaux.volume9
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue1
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00959543
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00959543v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Communications%20in%20Mathematical%20Sciences&rft.date=2011&rft.volume=9&rft.issue=1&rft.spage=1-31&rft.epage=1-31&rft.eissn=1539-6746&rft.issn=1539-6746&rft.au=AREGBA-DRIOLLET,%20Denise&HANOUZET,%20Bernard&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée