Afficher la notice abrégée

hal.structure.identifierInstituto de Matemática, Estatística e Computação Científica [Brésil] [IMECC]
dc.contributor.authorGARIBALDI, Eduardo
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorTHIEULLEN, Philippe
dc.date.accessioned2024-04-04T02:18:42Z
dc.date.available2024-04-04T02:18:42Z
dc.date.issued2012
dc.identifier.issn0022-4715
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/189339
dc.description.abstractEnLet $(\Sigma^+_G, \sigma)$ be a one-sided transitive subshift of finite type, where symbols are given by a finite spin set $ S $, and admissible transitions are represented by an irreducible directed graph $ G\subset S\times S $. Let $ H : \Sigma^+_G\to\mathbb{R}$ be a locally constant function (that corresponds with a local observable which makes finite-range interactions). Given $\beta > 0$, let $ \mu_{\beta H} $ be the Gibbs-equilibrium probability measure associated with the observable $-\beta H$. It is known, by using abstract considerations, that $\{\mu_{\beta H}\}_{\beta>0}$ converges as $ \beta \to + \infty $ to a $H$-minimizing probability measure $\mu_{\textrm{min}}^H$ called zero-temperature Gibbs measure. For weighted graphs with a small number of vertices, we describe here an algorithm (similar to the Puiseux algorithm) that gives the explicit form of $\mu_{\textrm{min}}^H$ on the set of ground-state configurations
dc.language.isoen
dc.publisherSpringer Verlag
dc.subject.enzero-temperature Gibbs measures
dc.subject.enground-state configurations
dc.subject.enPuiseux algorithm
dc.title.enDescription of some ground states by Puiseux technics
dc.typeArticle de revue
dc.subject.halMathématiques [math]/Systèmes dynamiques [math.DS]
bordeaux.journalJournal of Statistical Physics
bordeaux.page125 - 180
bordeaux.volume146
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00963864
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00963864v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20Statistical%20Physics&rft.date=2012&rft.volume=146&rft.spage=125%20-%20180&rft.epage=125%20-%20180&rft.eissn=0022-4715&rft.issn=0022-4715&rft.au=GARIBALDI,%20Eduardo&THIEULLEN,%20Philippe&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée