Afficher la notice abrégée

hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorAREGBA-DRIOLLET, Denise
dc.date.accessioned2024-04-04T02:18:22Z
dc.date.available2024-04-04T02:18:22Z
dc.date.created2014-04-17
dc.date.issued2015
dc.identifier.issn1539-6746
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/189306
dc.description.abstractEnWe study the Godunov scheme for a nonlinear Maxwell model arising in nonlinear optics, the Kerr model. This is a hyperbolic system of conservation laws with some eigenvalues of variable multiplicity, neither genuinely nonlinear nor linearly degenerate. The solution of the Riemann problem for the full-vector 6x6 system is constructed and proved to exist for all data. This solution is compared to the one of the reduced Transverse Magnetic model. The scheme is implemented in one and two space dimensions. The results are very close to the ones obtained with a Kerr-Debye relaxation approximation.
dc.language.isoen
dc.publisherInternational Press
dc.title.enGodunov scheme for Maxwell's equations with Kerr nonlinearity
dc.typeArticle de revue
dc.identifier.doi10.4310/CMS.2015.v13.n8.a10
dc.subject.halMathématiques [math]/Analyse numérique [math.NA]
dc.identifier.arxiv1404.6372
bordeaux.journalCommunications in Mathematical Sciences
bordeaux.page2195-2222
bordeaux.volume13
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue8
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00984209
hal.version1
hal.popularnon
hal.audienceInternationale
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00984209v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Communications%20in%20Mathematical%20Sciences&rft.date=2015&rft.volume=13&rft.issue=8&rft.spage=2195-2222&rft.epage=2195-2222&rft.eissn=1539-6746&rft.issn=1539-6746&rft.au=AREGBA-DRIOLLET,%20Denise&rft.genre=article


Fichier(s) constituant ce document

FichiersTailleFormatVue

Il n'y a pas de fichiers associés à ce document.

Ce document figure dans la(les) collection(s) suivante(s)

Afficher la notice abrégée