Show simple item record

dc.contributor.authorAULICINO, David
hal.structure.identifierInstitut de Mathématiques de Bordeaux [IMB]
dc.contributor.authorNGUYEN, Duc-Manh
dc.contributor.authorWRIGHT, Alex
dc.date.accessioned2024-04-04T02:18:18Z
dc.date.available2024-04-04T02:18:18Z
dc.date.created2014-04-04
dc.date.issued2016-08
dc.identifier.issn1435-9855
dc.identifier.urihttps://oskar-bordeaux.fr/handle/20.500.12278/189299
dc.description.abstractEnThe moduli space of genus 3 translation surfaces with a single zero has two connected components. We show that in the odd connected component H^{odd}(4) the only GL^+(2,R) orbit closures are closed orbits, the Prym locus Q(3,-1^3), and H^{odd}(4). Together with work of Matheus-Wright, this implies that there are only finitely many non-arithmetic closed orbits (Teichmuller curves) in H^{odd}(4) outside of the Prym locus.
dc.language.isoen
dc.publisherEuropean Mathematical Society
dc.subjecttranslation surface
dc.subjectmoduli space
dc.title.enClassification of higher rank orbit closures in $H^{\text{odd}}(4)$
dc.typeArticle de revue
dc.subject.halMathématiques [math]/Systèmes dynamiques [math.DS]
dc.subject.halMathématiques [math]/Topologie géométrique [math.GT]
dc.identifier.arxiv1308.5879
bordeaux.journalJournal of the European Mathematical Society
bordeaux.page1855-1872
bordeaux.volume18
bordeaux.hal.laboratoriesInstitut de Mathématiques de Bordeaux (IMB) - UMR 5251*
bordeaux.issue8
bordeaux.institutionUniversité de Bordeaux
bordeaux.institutionBordeaux INP
bordeaux.institutionCNRS
bordeaux.peerReviewedoui
hal.identifierhal-00988383
hal.version1
hal.popularnon
hal.audienceNon spécifiée
hal.origin.linkhttps://hal.archives-ouvertes.fr//hal-00988383v1
bordeaux.COinSctx_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.jtitle=Journal%20of%20the%20European%20Mathematical%20Society&rft.date=2016-08&rft.volume=18&rft.issue=8&rft.spage=1855-1872&rft.epage=1855-1872&rft.eissn=1435-9855&rft.issn=1435-9855&rft.au=AULICINO,%20David&NGUYEN,%20Duc-Manh&WRIGHT,%20Alex&rft.genre=article


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record